【題目】《九章算術(shù)》是我國古代一部重要的數(shù)學(xué)著作,書中有如下問題:“今有良馬與駑馬發(fā)長安,至齊.齊去長安三千里,良馬初日行一百九十三里,日增一十三里,駑馬初日行九十七里,日減半里.良馬先至齊,復(fù)還迎駑馬,問幾何日相逢.”其大意為:“現(xiàn)在有良馬和駑馬同時從長安出發(fā)到齊去,已知長安和齊的距離是3000里,良馬第一天行193里,之后每天比前一天多行13里,駑馬第一天行97里,之后每天比前一天少行0.5里.良馬到齊后,立刻返回去迎駑馬,多少天后兩馬相遇.”試確定離開長安后的第天,兩馬相逢.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓:的右焦點(diǎn)為,右頂點(diǎn)、上頂點(diǎn)分別為點(diǎn),
已知橢圓的焦距為,且.
(1)求橢圓的方程;
(2)若過點(diǎn)的直線交橢圓于兩點(diǎn),當(dāng)面積取得最大時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,A是函數(shù)f(x)=2x的圖象上的動點(diǎn),過點(diǎn)A作直線平行于x軸,交函數(shù)g(x)=2x+2的圖象于點(diǎn)B,若函數(shù)f(x)=2x的圖象上存在點(diǎn)C使得△ABC為等邊三角形,則稱A為函數(shù)f(x)=2x上的好位置點(diǎn).函數(shù)f(x)=2x上的好位置點(diǎn)的個數(shù)為( )
A.0
B.1
C.2
D.大于2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex(x2+ax+a).
(1)求f(x)的單調(diào)區(qū)間;
(2)求證:當(dāng)a≥4時,函數(shù)f(x)存在最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】.已知函數(shù).
(1)求過點(diǎn)的圖象的切線方程;
(2)若函數(shù)存在兩個極值點(diǎn), ,求的取值范圍;
(3)當(dāng)時,均有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與軸相切于點(diǎn),且被軸所截得的弦長為,圓心在第一象限.
(Ⅰ)求圓的方程;
(Ⅱ)若點(diǎn)是直線上的動點(diǎn),過作圓的切線,切點(diǎn)為,當(dāng)△的面積最小時,求切線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,傾斜角為的直線與橢圓相交于兩點(diǎn),且線段的中點(diǎn)為.過橢圓內(nèi)一點(diǎn)的兩條直線分別與橢圓交于點(diǎn),且滿足,其中為實(shí)數(shù).當(dāng)直線平行于軸時,對應(yīng)的.
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)變化時,是否為定值?若是,請求出此定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三一班舉辦消防安全知識競賽,分別選出3名男生和3名女生組成男隊(duì)和女隊(duì),每人一道必答題,答對則為本隊(duì)得10分,答錯與不答都得0分,已知男隊(duì)每人答對的概率依次為 , , ,女隊(duì)每人答對的概率都是 ,設(shè)每人回答正確與否相互之間沒有影響,用X表示男隊(duì)的總得分.
(I) 求X的分布列及其數(shù)學(xué)期望E(X);
(Ⅱ)求在男隊(duì)和女隊(duì)得分之和為50的條件下,男隊(duì)比女隊(duì)得分高的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且3cosAcosB+1=3sinAsinB+cos2C.
(1)求∠C
(2)若△ABC的面積為5 ,b=5,求sinA.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com