8.sin27°cos63°+cos27°sin117°=( 。
A.1B.-1C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{{\sqrt{2}}}{2}$

分析 直接利用誘導(dǎo)公式化簡(jiǎn),通過(guò)兩角和與差的三角函數(shù)化簡(jiǎn)求解即可.

解答 解:sin27°cos63°+cos27°sin117°=sin27°cos63°+cos27°sin63°=sin90°=1.
故選:A.

點(diǎn)評(píng) 本題考查兩角和的正弦函數(shù)以及誘導(dǎo)公式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.求f(x)=$\frac{1}{2}$x2-lnx的單調(diào)增區(qū)間是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.y=ln(sin(2x+$\frac{π}{3}$))的定義域?yàn)椋╧π-$\frac{π}{6}$,kπ+$\frac{π}{3}$),k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)p:函數(shù)f(x)=logax(a>0且a≠1)在(0,+∞)上單調(diào)遞增;
q:關(guān)于x的不等式x2+x+a>0恒成立.
若p或q為真命題,¬p或¬q也為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知命題p:實(shí)數(shù)x滿足(x-a)(x-3a)<0(a>0),命題q:實(shí)數(shù)x滿足x2-5x+6<0.
(1)當(dāng)a=1時(shí),若p∧q為真命題,求實(shí)數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)拋物線x2=2py(p>0)的焦點(diǎn)F,過(guò)焦點(diǎn)F作y軸的垂線,交拋物線于A、B兩點(diǎn),點(diǎn)M(0,-$\frac{p}{2}$),Q為拋物線上異于A、B的任意一點(diǎn),經(jīng)過(guò)點(diǎn)Q作拋物線的切線,記為l,l與MA、MB分別交于D、E.
(1)判斷直線MA與拋物線的位置關(guān)系并證明;
(2)求$\frac{{S}_{△QAB}}{{S}_{△MDE}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)f(x)=ex-ax在[3,+∞)單調(diào)遞增,則實(shí)數(shù)a的取值范圍是(-∞,e3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知(1+x)n的展開(kāi)式中第3項(xiàng)與第8項(xiàng)的二項(xiàng)式系數(shù)相等,則奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為2048.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位.已知直線l的參數(shù)方程為 $\left\{\begin{array}{l}{x=2-t}\\{y=-1+t}\end{array}\right.$(t為參數(shù)),曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ.
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線l與曲線C相交于A、B兩點(diǎn),點(diǎn)P(2,-1)在直線l上,求線段|AB|的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案