滿足“對(duì)任意實(shí)數(shù)x,y,f(x•y)=f(x)•f(y)都成立”的函數(shù)可以是( 。
A、f(x)=3x
B、f(x)=log3x
C、f(x)=x3
D、f(x)=
3
x
分析:由題設(shè)中“對(duì)任意實(shí)數(shù)x,y,f(x•y)=f(x)•f(y)都成立”這個(gè)條件知此法則對(duì)應(yīng)的函數(shù)應(yīng)是一個(gè)冪函數(shù),由此特征選擇正確選項(xiàng)即可
解答:解:由題意“對(duì)任意實(shí)數(shù)x,y,f(x•y)=f(x)•f(y)都成立”,知此函數(shù)應(yīng)是一個(gè)冪函數(shù)
考察四個(gè)選項(xiàng),只有C中的f(x)=x3是一個(gè)冪函數(shù),故C是正確答案
故選C
點(diǎn)評(píng):本題考查冪函數(shù)的性質(zhì),是一個(gè)抽象判斷題,解題的關(guān)鍵是熟練掌握冪函數(shù)的性質(zhì),能由題設(shè)條件中所給的運(yùn)算法則得出函數(shù)的類型來,考查了判斷的能力及對(duì)基礎(chǔ)知識(shí)掌握的熟練程度,屬于基礎(chǔ)概念考查題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)滿足:①對(duì)任意實(shí)數(shù)x,有f(2+x)=f(2-x);②對(duì)任意2≤x1<x2,有
f(x1)-f(x2
x1-x2
>0,則a=f(2log24),b=f(log
1
2
4),c=f(0)的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c,(a,b,c∈R)滿足:對(duì)任意實(shí)數(shù)x,都有f(x)≥x,且當(dāng)x∈(1,3)時(shí),有f(x)≤
18
(x+2)2
成立.
(1)證明:f(2)=2;
(2)若f(-2)=0,求f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知二次函數(shù)f(x)=ax2+bx+c,(a,b,c∈R)滿足:對(duì)任意實(shí)數(shù)x,都有f(x)≥x,f(-2)=0,且當(dāng)x∈(1,3)時(shí),有f(x)≤
1
8
(x+2)2
成立.
(1)求f(x)的表達(dá)式.
(2)g(x)=4f′(x)-sinx-2數(shù)列{an}滿足:an+1=g(an),0<a1<1,n=1,2,3,證明:(Ⅰ)0<an+1<an<1;(Ⅱ)an+1
1
6
an
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)滿足:①對(duì)任意實(shí)數(shù)x,有f(2+x)=f(2-x);②對(duì)任意實(shí)數(shù)x1,x2∈[2,+∞),有
f(x1)-f(x2)
x1-x2
<0
,則a=f(0),b=f(2log27),c=f(log
1
2
4)
則a,b,c的關(guān)系是
a>c>b
a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c,(a,b,c∈R)滿足,對(duì)任意實(shí)數(shù)x,都有f(x)≥x,且當(dāng)x∈(1,3)時(shí),有f(x)≤
1
8
(x+2)2成立.
(1)證明:f(2)=2,若f(-2)=0,求f(x)的表達(dá)式
(2)設(shè)g(x)=f(x)-
m
2
x,x∈[0,+∞),若g(x)圖象上的點(diǎn)都位于直線y=
1
4
的上方,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案