4.執(zhí)行如圖所示的程序框圖,若輸出k的值為8,則判斷框內(nèi)可填入的條件是( 。
A.S≤$\frac{3}{4}$?B.S≤$\frac{11}{12}$?C.S≤$\frac{25}{24}$?D.S≤$\frac{137}{120}$?

分析 模擬執(zhí)行程序框圖,依次寫(xiě)出每次循環(huán)得到的k,S的值,當(dāng)S>$\frac{11}{12}$時(shí),退出循環(huán),輸出k的值為8,故判斷框圖可填入的條件.

解答 解:模擬執(zhí)行程序框圖,k的值依次為0,2,4,6,8,
因此S=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$=$\frac{11}{12}$(此時(shí)k=6),
因此可填:S≤$\frac{11}{12}$?.
故選:B.

點(diǎn)評(píng) 本題考查了當(dāng)型循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程判斷程序運(yùn)行的S值是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.四棱錐S-ABCD中,底面ABCD為平行四邊形,已知∠ABC=45°,AB=2,BC=2$\sqrt{2}$,SB=SC.
(1)設(shè)平面SCD與平面SAB的交線為l,求證:l∥AB;
(2)求證:SA⊥BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知拋物線C1:x2=2py的焦點(diǎn)F與橢圓C2:$\frac{{x}^{2}}{4}$+y2=1的上頂點(diǎn)重合,直線MN:y=kx+m與拋物線C1交于M、N兩點(diǎn),分別以M、N為切點(diǎn)作曲線C1的兩條切線交與點(diǎn)P.
(1)求拋物線C1的方程;
(2)①若直線MN過(guò)拋物線C1的焦點(diǎn),判斷點(diǎn)P是否在拋物線C1的準(zhǔn)線上,并說(shuō)明理由;
②若點(diǎn)P在橢圓C2上,求△PMN面積S的最大值及相應(yīng)的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知數(shù)列{an}滿足$\frac{1}{{a}_{n+1}}$=$\frac{1}{2{a}_{n}}$+$\frac{1}{2}$且a1=4(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=an2-an,且Sn為{bn}的前n項(xiàng)和,證明:12≤Sn<15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)=sinx-2x,則解關(guān)于a的不等式f(a2-8)+f(2a)<0的解集是( 。
A.(-4,2)B.(-∞,-4)∪(2,+∞)C.(2,+∞)D.(-∞,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)集合A={x|x2≤x},B={-1,0,1},則集合A∩B的子集共有( 。
A.2個(gè)B.3個(gè)C.4個(gè)D.8個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知集合M={-2,-1,0,1,2},N={x|(x+1)(x-2)≤0},則M∩N=( 。
A.{-1,0}B.{0,1}C.{-1,0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.等差數(shù)列{an}的前n項(xiàng)和為Sn,Sm-1=-4,Sm=0,Sm+1=6,則m=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在四棱錐E-ABCD中,底面ABCD是邊長(zhǎng)為$\sqrt{2}$的正方形,平面AEC⊥平面CDE,∠AEC=90°,F(xiàn)為DE中點(diǎn),且DE=1.
(Ⅰ)求證:BE∥平面ACF;
(Ⅱ)求證:CD⊥DE;
(Ⅲ)求FC與平面ABCD所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案