已知F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>b>0)
的兩焦點(diǎn),以線段F1F2為邊作正三角形MF1F2,若邊MF1的中點(diǎn)在雙曲線上,則雙曲線的離心率是( 。
A、4+2
2
B、
3
-1
C、
3
+1
2
D、
3
+1
分析:先根據(jù)雙曲線方程求得焦點(diǎn)坐標(biāo)的表達(dá)式,進(jìn)而可求得三角形的高,則點(diǎn)M的坐標(biāo)可得,進(jìn)而求得其中點(diǎn)N的坐標(biāo),代入雙曲線方程求得a,b和c的關(guān)系式化簡整理求得關(guān)于e的方程求得e.
解答:解:依題意可知雙曲線的焦點(diǎn)為F1(-c,0),F(xiàn)2(c,0)
∴F1F2=2c
∴三角形高是
3
c
M(0,
3
c)
所以中點(diǎn)N(-
c
2
,
3
2
c)
代入雙曲線方程得:
C2
4a2
-
3c2
4b2
=1
整理得:b2c2-3a2c2=4a2b2
∵b2=c2-a2
所以c4-a2c2-3a2c2=4a2c2-4a4
整理得e4-8e2+4=0
求得e2=4±2
3

∵e>1,
∴e=
3
+1
故選D
點(diǎn)評:本題主要考查了雙曲線的簡單性質(zhì).考查了學(xué)生對雙曲線的基礎(chǔ)知識的把握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別為雙曲
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn),P為雙曲線左支上任一點(diǎn),若
|PF2|2
|PF1|
的最小值為8a,則雙曲線的離心率e的取值范圍是(  )
A、(1,+∞)
B、(0,3]
C、(1,3]
D、(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是雙曲
x2
9
-
y2
16
=1
的左、右兩個(gè)焦點(diǎn),點(diǎn)P是雙曲線上一點(diǎn),且|PF1|.|PF2|=32,求∠F1PF2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知F1、F2是雙曲數(shù)學(xué)公式的左、右兩個(gè)焦點(diǎn),點(diǎn)P是雙曲線上一點(diǎn),且|PF1|.|PF2|=32,求∠F1PF2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年陜西省西安市西工大附中高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:選擇題

已知F1,F(xiàn)2分別為雙曲的左、右焦點(diǎn),P為雙曲線左支上任一點(diǎn),若的最小值為8a,則雙曲線的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年陜西省西安市西工大附中高考數(shù)學(xué)四模試卷(理科)(解析版) 題型:選擇題

已知F1,F(xiàn)2分別為雙曲的左、右焦點(diǎn),P為雙曲線左支上任一點(diǎn),若的最小值為8a,則雙曲線的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

同步練習(xí)冊答案