分析 (1)由橢圓的離心率e=$\frac{1}{2}$,左頂點(-4,0),求出a,b,由此能求出橢圓方程.
(2)直線的方程為y=k(x+4),與橢圓聯(lián)立,得(x+4)[(4k2+3)x+16k2-12]=0,由此利用韋達定理、中點坐標公式、直線方程、直線垂直、橢圓性質,結合已知條件能求出定點Q的坐標.
解答 解:(1)∵左頂點為A(-4,0),∴a=4,
又∵e=$\frac{c}{a}=\frac{1}{2}$,∴c=2,
又∵b2=a2-c2=16-4=12,…(2分)
∴橢圓方程為:$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}$=1.…(3分)
(2)直線的方程為y=k(x+4),
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1}\\{y=k(x+4)}\end{array}\right.$,消元得$\frac{{x}^{2}}{16}+\frac{[k(x+4)]^{2}}{12}=1$,
化簡得(x+4)[(4k2+3)x+16k2-12]=0,
∴${x}_{1}=-4,{x}_{2}=\frac{-16{k}^{2}+12}{4{k}^{2}+3}$,…(6分)
∴D($\frac{-16{k}^{2}+12}{4{k}^{2}+3}$,$\frac{24k}{4{k}^{2}+3}$),又∵點P為AD的中點,∴P($\frac{-16{k}^{2}}{4{{k}^{2}+3}_{\;}}$,$\frac{12k}{4{k}^{2}+3}$),
則kOP=-$\frac{3}{4k}$(k≠0),…(9分)
直線l的方程為y=k(x+4),令x=0,得E(0,4k),
假設存在定點Q(m,n)(m≠0)使得OP⊥EQ,則kOP•kEQ=-1,
即-$\frac{3}{4k}•\frac{n-4k}{m}=-1$,
∴(4m+12)k-3n=0恒成立
∴$\left\{\begin{array}{l}{4m+12=0}\\{-3n=0}\end{array}\right.$,即$\left\{\begin{array}{l}{m=-3}\\{n=0}\end{array}\right.$,
因此定點Q的坐標為(-3,0)…(12分)
點評 本題考查橢圓方程的求法,考查滿足直線與直線垂直的定點是否存在的判斷與求法,是中檔題,解題時要認真審題,注意韋達定理、中點坐標公式、直線方程、直線垂直、橢圓性質的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | 3$\sqrt{2}$ | D. | 3$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 20 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com