【題目】某手機生產(chǎn)企業(yè)為了解消費者對某款手機的認同情況,通過銷售部隨機抽取50名購買該款手機的消費者,并發(fā)出問卷調(diào)查(滿分50分),該問卷只有20份給予回復(fù),這20份的評分如下:

47,36,28,48,48,44,50,46,50,37,35,49

38,37,50,36,38,45,29,39

1)完成下面的莖葉圖,并求12名男消費者評分的中位數(shù)與8名女消費者評分的眾數(shù)及平均值;

2

3

4

5

滿意

不滿意

合計

合計

2)若大于40分為滿意,否則為不滿意,完成上面的列聯(lián)表,并判斷是否有95%的把握認為消費者對該款手機的滿意度與性別有關(guān);

3)若從回復(fù)的20名消費者中按性別用分層抽樣的方法抽取5人,再從這5人中隨機抽取2人作進一步調(diào)查,求至少有1名女性消費者被抽到的概率

附:

0.05

0.025

0.01

3.841

5.024

6.635

【答案】(1)見解析,男消費者評分的中位數(shù)是46.5,眾數(shù)為38,平均值39;(2)見解析,沒有;(3)

【解析】

(1)根據(jù)題意填寫莖葉圖,根據(jù)中位數(shù),眾數(shù)和平均數(shù)計算方法求解即可;

(2)根據(jù)題意填寫列聯(lián)表,計算的值,對照臨界值,作出判斷即可;

(3)根據(jù)古典概型計算公式計算即可.

(1)莖葉圖如圖

由圖可知,12名男消費者評分的中位數(shù)是46.5;

女消費者評分的眾數(shù)為,平均值為,

(2)列聯(lián)表如圖,

滿意

不滿意

合計

8

4

12

2

6

8

合計

10

10

20


所以沒有95%的把握認為消費者對該款手機的滿意度與性別有關(guān)

(3)由題意可得抽取的5人中3名男生設(shè)為a,bc,2名女生設(shè)為AB,

抽取總數(shù)有(a,b),(ac),(aA),(aB),(b,c),(bA),(bB),(c,A),(cB),(AB10種,

其中至少有1名女性消費者的7種,

故所求的概率為P

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某個比賽安排4名志愿者完成6項工作,每人至少完成一項,每項工作由一人完成,則不同的安排方式有多少種(

A.7200B.4800C.2640D.1560

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義在上的奇函數(shù),且滿足,當時,,則函數(shù)在區(qū)間上所有零點的個數(shù)為( )

A.0B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】生活中萬事萬物都是有關(guān)聯(lián)的,所有直線中有關(guān)聯(lián)直線,所有點中也有相關(guān)點,現(xiàn)在定義:平面內(nèi)如果兩點、都在函數(shù)的圖像上,而且滿足、兩點關(guān)于原點對稱,則稱點對(、)是函數(shù)的“相關(guān)對稱點對”(注明:點對()與(、)看成同一個“相關(guān)對稱點對”).已知函數(shù),則這個函數(shù)的“相關(guān)對稱點對”有(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且上的最大值為

求函數(shù)的解析式;

判斷內(nèi)的零點的個數(shù),并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為常數(shù)).

1)討論函數(shù)的單調(diào)性;

(2)當時,設(shè)的兩個極值點,()恰為的零點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)若,求證:函數(shù)恰有一個負零點;(用圖象法證明不給分)

2)若函數(shù)恰有三個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,摩天輪的半徑為,點距地面的高度為,摩天輪按逆時針方向作勻速運動,且每轉(zhuǎn)一圈,摩天輪上點的起始位置在最高點.

(1)試確定點距離地面的高度(單位:)關(guān)于旋轉(zhuǎn)時間(單位:)的函數(shù)關(guān)系式;

(2)在摩天輪轉(zhuǎn)動一圈內(nèi),有多長時間點距離地面超過?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點與點在直線的兩側(cè),給出以下結(jié)論:① ;② 時,有最小值,無最大值;③ ;④ 時,的取值范圍是;正確的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案