【題目】已知函數(shù)
(1)當(dāng)時,求函數(shù)的極值;
(2)求的單調(diào)區(qū)間.
【答案】(1)極大值為,極小值為;(2)詳見解析.
【解析】
(1)由導(dǎo)函數(shù)的正負(fù)可確定的單調(diào)性,進(jìn)而確定極大值為,極小值為,代入可求得結(jié)果;
(2)求得后,分別在、、和四種情況下確定的正負(fù),由此可得單調(diào)區(qū)間.
(1)當(dāng)時,,
,
當(dāng)和時,;當(dāng)時,,
在,上單調(diào)遞增,在上單調(diào)遞減,
在處取得極大值,在處取得極小值,
極大值為,極小值為.
(2)由題意得:,
①當(dāng)時,
當(dāng)時,;當(dāng)時,,
的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;
②當(dāng)時,
當(dāng)和時,;當(dāng)時,,
的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,;
③當(dāng)時,在上恒成立,
的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;
④當(dāng)時,
當(dāng)和時,;當(dāng)時,,
的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,;
綜上所述:當(dāng)時,的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;當(dāng)時,的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,;當(dāng)時,的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當(dāng)時,的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,E,F,M,N分別是,BC,,的中點(diǎn).
(1)求證:平面平面NEF;
(2)求二面角的平面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的半焦距為,圓與橢圓有且僅有兩個公共點(diǎn),直線與橢圓只有一個公共點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知動直線過橢圓的左焦點(diǎn),且與橢圓分別交于兩點(diǎn),試問:軸上是否存在定點(diǎn),使得為定值?若存在,求出該定值和點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1, 圓心在上.
(1)若圓心也在直線上,過點(diǎn)作圓的切線,求切線方程;
(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:,點(diǎn),直線.
(1)求與圓相切,且與直線垂直的直線方程;
(2)在直線上(為坐標(biāo)原點(diǎn)),存在定點(diǎn)(不同于點(diǎn)),滿足:對于圓上的任一點(diǎn),都有為一常數(shù),試求出所有滿足條件的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了引導(dǎo)居民合理用水,居民生活用水實(shí)行二級階梯式水價計量方法,具體如下;第一階梯,每戶居民每月用水量不超過12噸,價格為4元/噸;第二階梯,每戶居民用水量超過12噸,超過部分的價格為8元/噸,為了了解全是居民月用水量的分布情況,通過抽樣獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照(全市居民月用水量均不超過16噸)分成8組,制成了如圖1所示的頻率分布直方圖.
(Ⅰ)求頻率分布直方圖中字母的值,并求該組的頻率;
(Ⅱ)通過頻率分布直方圖,估計該市居民每月的用水量的中位數(shù)的值(保留兩位小數(shù));
(Ⅲ)如圖2是該市居民張某2016年1~6月份的月用水費(fèi)(元)與月份的散點(diǎn)圖,其擬合的線性回歸方程是若張某2016年1~7月份水費(fèi)總支出為312元,試估計張某7月份的用水噸數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),求
(1)過點(diǎn)A,B且周長最小的圓的方程;
(2)過點(diǎn)A,B且圓心在直線上的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,若sin A+cos A=1-sin.
(1)求sin A的值;
(2)若c2-a2=2b,且sin B=3cos C,求b.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,點(diǎn)P為DD1的中點(diǎn),點(diǎn)M為BB1的中點(diǎn).
(1)求證:PB1⊥平面PAC;
(2)求直線CM與平面PAC所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com