【題目】下列函數(shù)中,在其定義域內(nèi)是增函數(shù)而且又是奇函數(shù)的是(
A.y=2x
B.y=2|x|
C.y=2x﹣2x
D.y=2x+2x

【答案】C
【解析】解:A雖增卻非奇非偶,B、D是偶函數(shù),
C由奇偶函數(shù)定義可知是奇函數(shù),由復(fù)合函數(shù)單調(diào)性可知在其定義域內(nèi)是增函數(shù)(或y'=2xln2+2xln2>0),
故選C.
【考點(diǎn)精析】本題主要考查了函數(shù)單調(diào)性的判斷方法和函數(shù)的奇偶性的相關(guān)知識(shí)點(diǎn),需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較;偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),且f(x+4)=f(x﹣2).若當(dāng)x∈[﹣3,0]時(shí),f(x)=6x , 則f(919)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|﹣4≤x﹣6≤0},集合B={x|2x﹣6≥3﹣x}.
(1)求R(A∩B);
(2)若C={x|x≤a},且A∩C=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題“x0∈R,x3﹣x2+1>0”的否定是(
A.x∈R,x3﹣x2+1≤0
B.x0∈R,x3﹣x2+1<0
C.x0∈R,x3﹣x2+1≤0
D.不存在x∈R,x3﹣x2+1>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 函數(shù)f(x)的定義域?yàn)镽,對(duì)任意的x,y∈R,都有f(x+y)=f(x)+f(y),且當(dāng)x<0時(shí),f(x)>0.
(1)求證:f(x)是奇函數(shù);
(2)判斷f(x)在R上的單調(diào)性,并加以證明;
(3)解關(guān)于x的不等式f(x2)+3f(a)>3f(x)+f(ax),其中常數(shù)a∈R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x≤0時(shí),f(x)=2x2﹣x,則f(1)=(
A.﹣3
B.﹣1
C.1
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的不等式|x﹣1|﹣|x+m|≥a有解時(shí),實(shí)數(shù)a的最大值為5,則實(shí)數(shù)m的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小趙、小錢(qián)、小孫、小李四位同學(xué)被問(wèn)到誰(shuí)去過(guò)長(zhǎng)城時(shí), 小趙說(shuō):我沒(méi)去過(guò);
小錢(qián)說(shuō):小李去過(guò);
小孫說(shuō);小錢(qián)去過(guò);
小李說(shuō):我沒(méi)去過(guò).
假定四人中只有一人說(shuō)的是假話(huà),由此可判斷一定去過(guò)長(zhǎng)城的是(
A.小趙
B.小李
C.小孫
D.小錢(qián)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若a,b∈R,則“|a+b|=|a|+|b|”是“ab>0”的(  )
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案