如圖,F1、F2分別是橢圓C:=1(a>b>0)的左、右焦點(diǎn),A是橢圓C的頂點(diǎn),B是直線AF2與橢圓C的另一個(gè)交點(diǎn),∠F1AF2=60°.
(1)求橢圓C的離心率;
(2)已知△AF1B的面積為40,求a,b的值.
(1)e=.(2)a=10,b=5
【解析】(1)由題意可知,△AF1F2為等邊三角形,a=2c,所以e=.
(2)方法一:a2=4c2,b2=3c2,直線AB的方程為y=- (x-c),
將其代入橢圓方程3x2+4y2=12c2,得B,
所以|AB|=..
由S△AF1B= |AF1|·|AB|·sin∠F1AB=a·c·= a2=40,
解得a=10,b=5.
方法二:設(shè)|AB|=t.因?yàn)?/span>|AF2|=a,所以|BF2|=t-a,
由橢圓定義|BF1|+|BF2|=2a可知,|BF1|=3a-t,
再由余弦定理(3a-t)2=a2+t2-2atcos 60°可得,t=a,
由S△AF1B=aa=a2=40知,a=10,b=5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專(zhuān)題復(fù)習(xí)與測(cè)試選擇填空限時(shí)訓(xùn)練3練習(xí)卷(解析版) 題型:填空題
已知正方形ABCD的邊長(zhǎng)為2, E為CD的中點(diǎn),則·=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專(zhuān)題復(fù)習(xí)與測(cè)試選擇填空限時(shí)訓(xùn)練1練習(xí)卷(解析版) 題型:選擇題
已知四棱錐P-ABCD,底面ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,PA=PD=2,平面PAD⊥平面ABCD,則它的正視圖的面積為( )
A. B. C. D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專(zhuān)題復(fù)習(xí)與測(cè)試專(zhuān)題6第1課時(shí)練習(xí)卷(解析版) 題型:解答題
某中學(xué)高三年級(jí)從甲、乙兩個(gè)班級(jí)各選出七名學(xué)生參加數(shù)學(xué)競(jìng)賽,他們?nèi)〉玫某煽?jī)(滿分100分)的莖葉圖如圖所示,其中甲班學(xué)生的平均分是85,乙班學(xué)生成績(jī)的中位數(shù)是83.
(1)求x和y的值;
(2)計(jì)算甲班七名學(xué)生成績(jī)的方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專(zhuān)題復(fù)習(xí)與測(cè)試專(zhuān)題5第3課時(shí)練習(xí)卷(解析版) 題型:解答題
設(shè)點(diǎn)P是圓x2+y2=4上任意一點(diǎn),由點(diǎn)P向x軸作垂線PP0,垂足為P0,且=.
(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)直線l:y=kx+m(m≠0)與(1)中的軌跡C交于不同的兩點(diǎn)A,B.
若直線OA,AB,OB的斜率成等比數(shù)列,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專(zhuān)題復(fù)習(xí)與測(cè)試專(zhuān)題5第2課時(shí)練習(xí)卷(解析版) 題型:選擇題
將兩個(gè)頂點(diǎn)在拋物線y2=2px(p>0)上,另一個(gè)頂點(diǎn)是此拋物線焦點(diǎn)的正三角形個(gè)數(shù)記為n,則( )
A.n=0 B.n=1 C.n=2 D.n≥3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專(zhuān)題復(fù)習(xí)與測(cè)試專(zhuān)題5第1課時(shí)練習(xí)卷(解析版) 題型:解答題
已知兩直線l1:ax-by+4=0,l2:(a-1)x+y+b=0.求分別滿足下列條件的a,b的值.
(1)直線l1過(guò)點(diǎn)(-3,-1),并且直線l1與l2垂直;
(2)直線l1與直線l2平行,并且坐標(biāo)原點(diǎn)到l1,l2的距離相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專(zhuān)題復(fù)習(xí)與測(cè)試專(zhuān)題4第2課時(shí)練習(xí)卷(解析版) 題型:填空題
如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,點(diǎn)M∈AB1,N∈BC1,且AM=BN≠,有以下四個(gè)結(jié)論:
①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN與A1C1是異面直線.其中正確命題的序號(hào)是________.(注:把你認(rèn)為正確命題的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專(zhuān)題復(fù)習(xí)與測(cè)試專(zhuān)題3第1課時(shí)練習(xí)卷(解析版) 題型:填空題
已知函數(shù)f(x)=,對(duì)于數(shù)列{an}有an=f(an-1)(n∈N*,且n≥2),如果a1=1,那么a2=________.an=________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com