【題目】定義在的函數(shù)的導(dǎo)函數(shù)為.
證明:(1)在區(qū)間存在唯一極小值點(diǎn);
(2)有且僅有2個零點(diǎn).
【答案】(1)證明見解析
(2)證明見解析
【解析】
(1)由題,再求導(dǎo)利用零點(diǎn)存在定理證明即可.
(2)由(1)可得在區(qū)間存在唯一極小值點(diǎn),再根據(jù)零點(diǎn)存在定理證明即可.
解:(1),則,
因為與在均為增函數(shù),故在為增函數(shù),
又,,結(jié)合零點(diǎn)存在性定理知:存在唯一使得,
若,;若,;故在區(qū)間存在唯一極小值點(diǎn).
(2)由(1)可知在區(qū)間存在唯一極小值點(diǎn),所以,
又,,結(jié)合零點(diǎn)存在性定理知:存在唯一使得,
存在唯一使得,故當(dāng)時,,當(dāng)時,,
故在和為增函數(shù),在為減函數(shù),則
且,由零點(diǎn)存在性定理:存在唯一使得,
故函數(shù)在有且僅有與兩個零點(diǎn);
當(dāng)時,,則,故函數(shù)在沒有零點(diǎn);
綜上所述,有且僅有2個零點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國際羽毛球比賽規(guī)則從2006年5月開始,正式?jīng)Q定實行21分的比賽規(guī)則和每球得分制,并且每次得分者發(fā)球,所有單項的每局獲勝分至少是21分,最高不超過30分,即先到21分的獲勝一方贏得該局比賽,如果雙方比分為時,獲勝的一方需超過對方2分才算取勝,直至雙方比分打成時,那么先到第30分的一方獲勝.在一局比賽中,甲發(fā)球贏球的概率為,甲接發(fā)球贏球的概率為,則在比分為,且甲發(fā)球的情況下,甲以贏下比賽的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(R).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若對任意實數(shù),當(dāng)時,函數(shù)的最大值為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)各項均為正數(shù)的數(shù)列的前項和為,已知,且對一切都成立.
(1)當(dāng)時.
①求數(shù)列的通項公式;
②若,求數(shù)列的前項的和;
(2)是否存在實數(shù),使數(shù)列是等差數(shù)列.如果存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機(jī)詢問某地100名高中學(xué)生在選擇座位時是否挑同桌,得到如下列聯(lián)表:
男生 | 女生 | 合計 | |
挑同桌 | 30 | 40 | 70 |
不挑同桌 | 20 | 10 | 30 |
總計 | 50 | 50 | 100 |
(1)從這50名男生中按是否挑同桌采取分層抽樣的方法抽取一個容量為5的樣本,現(xiàn)從這5名學(xué)生中隨機(jī)選取3名做深度采訪,求這3名學(xué)生中恰有2名挑同桌的概率;
(2)根據(jù)以上列聯(lián)表,是否有以上的把握認(rèn)為“性別與在選擇座位時是否挑同桌”有關(guān)?
下面的臨界值表供參考:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(參考公式:,其中.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中e為自然對數(shù)的底).
(1)若在上單調(diào)遞增,求實數(shù)a的取值范圍;
(2)若,證明:存在唯一的極小值點(diǎn),且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年是中國成立70周年,也是全面建成小康社會的關(guān)鍵之年.為了迎祖國70周年生日,全民齊心奮力建設(shè)小康社會,某校特舉辦“喜迎國慶,共建小康”知識競賽活動.下面的莖葉圖是參賽兩組選手答題得分情況,則下列說法正確的是( )
A.甲組選手得分的平均數(shù)小于乙組選手的平均數(shù)B.甲組選手得分的中位數(shù)大于乙組選手的中位數(shù)
C.甲組選手得分的中位數(shù)等于乙組選手的中位數(shù)D.甲組選手得分的方差大于乙組選手的的方差
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型公司為了切實保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次乙肝普查.為此需要抽驗960人的血樣進(jìn)行化驗,由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.
方案①:將每個人的血分別化驗,這時需要驗960次.
方案②:按個人一組進(jìn)行隨機(jī)分組,把從每組個人抽來的血混合在一起進(jìn)行檢驗,如果每個人的血均為陰性,則驗出的結(jié)果呈陰性,這個人的血就只需檢驗一次(這時認(rèn)為每個人的血化驗一次);否則,若呈陽性,則需對這個人的血樣再分別進(jìn)行一次化驗.這樣,該組個人的血總共需要化驗次.
假設(shè)此次普查中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應(yīng)相互獨(dú)立.
(1)設(shè)方案②中,某組個人中每個人的血化驗次數(shù)為,求的分布列;
(2)設(shè).試比較方案②中,分別取2,3,4時,各需化驗的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com