【題目】已知函數(shù)f(x)=xsinx,有下列四個結(jié)論: ①函數(shù)f(x)的圖象關(guān)于y軸對稱;
②存在常數(shù)T>0,對任意的實(shí)數(shù)x,恒有f(x+T)=f(x);
③對于任意給定的正數(shù)M,都存在實(shí)數(shù)x0 , 使得|f(x0)|≥M;
④函數(shù)f(x)在[0,π]上的最大值是 .
其中正確結(jié)論的序號是(請把所有正確結(jié)論的序號都填上).
【答案】①③
【解析】解:對于①,∵f(﹣x)=﹣xsin(﹣x)=xsinx=f(x),∴函數(shù)為偶函數(shù),
∴函數(shù)f(x)的圖象關(guān)于y軸對稱,故①正確;
對于②∵當(dāng)x=2kπ+ 時,f(x)=x,隨著x的增大函數(shù)值也在增大,所以不會是周期函數(shù),故②錯;
對于③∵|sinx0|≤1,∴對任意給定的正數(shù)M,都存在實(shí)數(shù)x0 , 使得|f(x0)|≥M,故③正確;對于④,f( )= .∵f′(x)=sinx+xcosx,∴f′( )=1,∴ 不是函數(shù)的極值點(diǎn),故④不正確
所以答案是:①③.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x||x﹣a|<4},B={x|x2﹣4x﹣5>0}.
(1)若a=1,求A∩B;
(2)若A∪B=R,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax3﹣x2+4x+3,若在區(qū)間[﹣2,1]上,f(x)≥0恒成立,則a的取值范圍是( )
A.[﹣6,﹣2]
B.
C.[﹣5,﹣3]
D.[﹣4,﹣3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著我國經(jīng)濟(jì)的迅速發(fā)展,居民的儲蓄存款逐年增長.設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲蓄存款(年底余額)如表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 |
時間代號x | 1 | 2 | 3 | 4 | 5 |
儲蓄存款y (千億元) | 5 | 6 | 7 | 8 | 10 |
附:回歸方程 中, = .
(1)求y關(guān)于x的線性回歸方程 ;
(2)用所求回歸方程預(yù)測該地區(qū)今年的人民幣儲蓄存款.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=1﹣x2 .
(1)求函數(shù)f(x)的解析式;
(2)作出函數(shù)f(x)的圖象.
(3)若函數(shù)f(x)在區(qū)間[a,a+1]上單調(diào),直接寫出實(shí)數(shù)a的取值范圍.(不必寫出演算過程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)y1=loga(3x+1),y2=loga(﹣3x),其中a>0且a≠1.
(1)若y1=y2 , 求x的值;
(2)若y1>y2 , 求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于0<a<1,給出下列四個不等式( )
①loga(1+a)<loga(1+ );
②loga(1+a)<loga(1+ );
③a1+a<a ;
④a1+a<a ;
其中成立的是( )
A.①③
B.①④
C.②③
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣3x
(1)求函數(shù)f(x)的單調(diào)區(qū)間,并求函數(shù)f(x)的極值;
(2)若方程x3﹣3x﹣a+1=0有三個相異的實(shí)數(shù)根,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+(x﹣c)|x﹣c|,a<0,c>0.
(1)當(dāng)a=﹣ ,c= 時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)c= +1時,若f(x)≥ 對x∈(c,+∞)恒成立,求實(shí)數(shù)a的取值范圍;
(3)設(shè)函數(shù)f(x)的圖象在點(diǎn)P(x1 , f(x1))、Q(x2 , f(x2))兩處的切線分別為l1、l2 . 若x1= ,x2=c,且l1⊥l2 , 求實(shí)數(shù)c的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com