10.側(cè)棱與底面垂直的三棱柱A1B1C1-ABC的所有棱長均為2,則三棱錐B-AB1C1的體積為$\frac{2\sqrt{3}}{3}$.

分析 先求出${S}_{△{A}_{1}{B}_{1}{C}_{1}}$,AA1=2,由此能求出三棱錐B-AB1C1的體積.

解答 解:∵側(cè)棱與底面垂直的三棱柱A1B1C1-ABC的所有棱長均為2,
∴${S}_{△{A}_{1}{B}_{1}{C}_{1}}$=$\frac{1}{2}×2×2×sin60°$=$\sqrt{3}$,AA1=2,
∴三棱錐B-AB1C1的體積為:
V=$\frac{1}{3}×{S}_{△{A}_{1}{B}_{1}{C}_{1}}×A{A}_{1}$=$\frac{2\sqrt{3}}{3}$.
故答案為:$\frac{2\sqrt{3}}{3}$.

點(diǎn)評(píng) 本題考查三棱錐的體積的求不地,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=log3(2x-1)的零點(diǎn)是( 。
A.1B.2C.(1,0)D.(2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知E,F(xiàn)為雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(0<a<b)$的左右焦點(diǎn),拋物線y2=2px(p>0)與雙曲線有公共的焦點(diǎn)F,且與雙曲線交于A、B不同兩點(diǎn),若5|AF|=4|EF|,則雙曲線的離心率為(  )
A.$4+\sqrt{7}$B.$4-\sqrt{3}$C.$4+\sqrt{3}$D.$4-\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,若在C上存在一點(diǎn)P,使得PO=$\frac{1}{2}$|F1F2|(O為坐標(biāo)原點(diǎn)),且直線OP的斜率為$\frac{4}{3}$,則,雙曲線C的離心率為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.三棱錐A-BCD的所有棱長均為6,點(diǎn)P在AC上,且AP=2PC,過P作四面體的截面,使截面平行于直線AB和CD,則該截面的周長為(  )
A.16B.12C.10D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,在四棱錐A-BCDE中,AB⊥平面BCDE,四邊形BCDE為矩形,F(xiàn)、G分別為AC、AE的中點(diǎn),AB=BC=2,BE=$\sqrt{2}$.
(Ⅰ)證明:EF⊥BD;
(Ⅱ)求點(diǎn)A到平面BFG的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某四棱錐的三視圖如圖所示,其俯視圖為等腰直角三角形,則該四棱錐的體積為( 。
A.$\frac{{2\sqrt{2}}}{3}$B.$\frac{4}{3}$C.$\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=(x-1)ex+ax2,a∈R.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)f(x)有兩個(gè)零點(diǎn),試求a的取值范圍;
( III)設(shè)函數(shù)g(x)=lnx+x-ex+1,當(dāng)a=0時(shí),證明f(x)-g(x)≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.執(zhí)行如圖所示的程序框圖,若輸入的x值為1,則輸出的k值為(  )
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊答案