【題目】為大力提倡厲行節(jié)約,反對(duì)浪費(fèi),某市通過(guò)隨機(jī)調(diào)查100名性別不同的居民是否做到光盤(pán)行動(dòng),得到如下列聯(lián)表:

做不到光盤(pán)行動(dòng)

做到光盤(pán)行動(dòng)

45

10

30

15

經(jīng)計(jì)算 附表:

參照附表,得到的正確結(jié)論是(

A.在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為該市居民能否做到光盤(pán)行動(dòng)與性別有關(guān)

B.在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為該市居民能否做到光盤(pán)行動(dòng)與性別無(wú)關(guān)

C.以上的把握認(rèn)為該市居民能否做到光盤(pán)行動(dòng)與性別有關(guān)

D.以上的把握認(rèn)為該市居民能否做到光盤(pán)行動(dòng)與性別無(wú)關(guān)

【答案】C

【解析】

根據(jù)計(jì)算所得值,結(jié)合臨界值表即可判斷選項(xiàng).

由題意可知,

結(jié)合臨界值表可知

因而在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為該市居民能否做到光盤(pán)行動(dòng)與性別有關(guān),或表述為有以上的把握認(rèn)為該市居民能否做到光盤(pán)行動(dòng)與性別有關(guān);

結(jié)合選項(xiàng)可知,C為正確選項(xiàng),

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形所在平面與等腰梯形所在平面互相垂直,已知,.

(1)求證:平面平面;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著新高考改革的不斷深入,高中學(xué)生生涯規(guī)劃越來(lái)越受到社會(huì)的關(guān)注.一些高中已經(jīng)開(kāi)始嘗試開(kāi)設(shè)學(xué)生生涯規(guī)劃選修課程,并取得了一定的成果.下表為某高中為了調(diào)查學(xué)生成績(jī)與選修生涯規(guī)劃課程的關(guān)系,隨機(jī)抽取50名學(xué)生的統(tǒng)計(jì)數(shù)據(jù).

成績(jī)優(yōu)秀

成績(jī)不夠優(yōu)秀

總計(jì)

選修生涯規(guī)劃課

15

10

25

不選修生涯規(guī)劃課

6

19

25

總計(jì)

21

29

50

(Ⅰ)根據(jù)列聯(lián)表運(yùn)用獨(dú)立性檢驗(yàn)的思想方法能否有的把握認(rèn)為“學(xué)生的成績(jī)是否優(yōu)秀與選修生涯規(guī)劃課有關(guān)”,并說(shuō)明理由;

(Ⅱ)如果從全校選修生涯規(guī)劃課的學(xué)生中隨機(jī)地抽取3名學(xué)生,求抽到成績(jī)不夠優(yōu)秀的學(xué)生人數(shù)的分布列和數(shù)學(xué)期望(將頻率當(dāng)作概率計(jì)算).

參考附表:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

參考公式,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,直線(xiàn)過(guò)定點(diǎn).

1)若與圓相切,求的方程;

2)若與圓相交于兩點(diǎn),線(xiàn)段的中點(diǎn)為,又的交點(diǎn)為,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】瑞士著名數(shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線(xiàn)上.這條直線(xiàn)被后人稱(chēng)為三角形的歐拉線(xiàn)”.在平面直角坐標(biāo)系中作△ABCABAC4,點(diǎn)B(13),點(diǎn)C(4,-2),且其歐拉線(xiàn)與圓M相切,則下列結(jié)論正確的是(

A.M上點(diǎn)到直線(xiàn)的最小距離為2

B.M上點(diǎn)到直線(xiàn)的最大距離為3

C.若點(diǎn)(xy)在圓M上,則的最小值是

D.與圓M有公共點(diǎn),則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)經(jīng)銷(xiāo)某商品,顧客可采用一次性付款或分期付款購(gòu)買(mǎi).根據(jù)以往資料統(tǒng)計(jì),顧客采用一次性付款的概率是經(jīng)銷(xiāo)一件該商品,若顧客采用一次性付款,商場(chǎng)獲得利潤(rùn)200若顧客采用分期付款,商場(chǎng)獲得利潤(rùn)250元.

1)求3位購(gòu)買(mǎi)該商品的顧客中至少有1位采用一次性付款的概率

2)求3位顧客每人購(gòu)買(mǎi)1件該商品,商場(chǎng)獲得利潤(rùn)不超過(guò)650元的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方體中,分別為棱的中點(diǎn),則下列說(shuō)正確的是(

A.平面B.平面

C.異面直線(xiàn)所成角為90°D.平面截正方體所得截面為等腰梯形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】利用獨(dú)立性檢驗(yàn)的方法調(diào)查高中生性別與愛(ài)好某項(xiàng)運(yùn)動(dòng)是否有關(guān),通過(guò)隨機(jī)調(diào)查200名高中生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),利用列聯(lián)表,由計(jì)算可得,參照下表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5,024

6.635

7.879

10.828

得到的正確結(jié)論是(

A. 99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)

B. 99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

C. 在犯錯(cuò)誤的概率不超過(guò)0.5%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

D. 在犯錯(cuò)誤的概率不超過(guò)0.5%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下幾個(gè)命題中:

①線(xiàn)性回歸直線(xiàn)方程恒過(guò)樣本中心

②用相關(guān)指數(shù)可以刻畫(huà)回歸的效果,值越小說(shuō)明模型的擬合效果越好;

③隨機(jī)誤差是引起預(yù)報(bào)值和真實(shí)值之間存在誤差的原因之一,其大小取決于隨機(jī)誤差的方差;

④在含有一個(gè)解釋變量的線(xiàn)性模型中,相關(guān)指數(shù)等于相關(guān)系數(shù)的平方.

其中真命題為 _________

查看答案和解析>>

同步練習(xí)冊(cè)答案