【題目】已知兩個不相等的非零向量,,兩組向量,,,,,,均由23排列而成,記,表示S所有可能取值中的最小值,則下列命題正確的是________.(寫出所有正確命題的編號)

S5個不同的值;②若,則無關(guān);③若,則無關(guān);④若,則;⑤若,,則的夾角為.

【答案】②④

【解析】

依題意,可求得3種結(jié)果:,,可判斷①錯誤;進一步分析有,即中最小為,再對②③④⑤逐一分析即可得答案.

均由23排列而成,

3種結(jié)果:;; ,故①錯誤;

②∵,∴中最小為,若,則,與無關(guān),故②正確;

③若,則,與有關(guān),故③錯誤;

④若,則,故④正確;

⑤若,

,∴,即的夾角為,⑤錯誤.

綜上所述,命題正確的是②④,

故答案為:②④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:若數(shù)列中存在,其中,,,均為正整數(shù),且),則稱數(shù)列數(shù)列”.

1)若數(shù)列的前項和,求證:數(shù)列

2)若是首項為1,公比為的等比數(shù)列,判斷是否是數(shù)列,說明理由;

3)若是公差為)的等差數(shù)列且),,求證:數(shù)列數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若的反函數(shù)是,解方程:;

(2)設(shè),是否存在,使得等式成立?若存在,求出的所有取值,如不存在,說明理由;

(3)對于任意,且,當(dāng)、、能作為一個三角形的三邊長時,、也總能作為某個三角形的三邊長,試探究的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于無窮數(shù)列,若對任意,滿足是與無關(guān)的常數(shù)),則稱數(shù)列數(shù)列.

(1)若),判斷數(shù)列是否為數(shù)列,說明理由;

(2)設(shè),求證:數(shù)列數(shù)列,并求常數(shù)的取值范圍;

(3)設(shè)數(shù)列,),問數(shù)列是否為數(shù)列?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義在上的函數(shù),有下述命題:①若是奇函數(shù),則的圖象關(guān)于點對稱;②函數(shù)的圖象關(guān)于直線對稱,則為偶函數(shù);③若對,有,則2的一個周期;④函數(shù)的圖象關(guān)于直線對稱.其中正確的命題是______.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列滿足:所有項;

設(shè)集合,將集合中的元素的最大值記為.換句話說,

數(shù)列中滿足不等式的所有項的項數(shù)的最大值我們稱數(shù)列為數(shù)列

伴隨數(shù)列例如,數(shù)列1,3,5的伴隨數(shù)列為1,1,2,2,3

1若數(shù)列的伴隨數(shù)列為1,1,1,2,2,2,3,請寫出數(shù)列;

2設(shè),求數(shù)列的伴隨數(shù)列的前100之和;

(3)若數(shù)列的前項和(其中常數(shù)),試求數(shù)列的伴隨數(shù)列項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知原命題“如果,那么關(guān)于的不等式的解集為”,那么原命題、逆命題、否命題和逆否命題是假命題的共有(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計圖,下列對統(tǒng)計圖理解錯誤的是( )

A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬件

B. 2018年1~4月的業(yè)務(wù)量同比增長率均超過50%,在3月底最高

C. 從兩圖來看,2018年1~4月中的同一個月的快遞業(yè)務(wù)量與收入的同比增長率并不完全一致

D. 從1~4月來看,該省在2018年快遞業(yè)務(wù)收入同比增長率逐月增長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校進入高中數(shù)學(xué)競賽復(fù)賽的學(xué)生中,高一年級有8人,高二年級有16人,高三年級有32人,現(xiàn)釆用分層抽樣的方法從這些學(xué)生中抽取7人進行釆訪.

1)求應(yīng)從各年級分別抽取的人數(shù);

2)若從抽取的7人中再隨機抽取2人做進一步了解(注高一學(xué)生記為,高二學(xué)生記為,高三學(xué)生記為,

①列出所有可能的抽取結(jié)果;

②求抽取的2人均為高三年級學(xué)生的概率.

查看答案和解析>>

同步練習(xí)冊答案