15.若b<a<0,則下列不等式一定成立的是(  )
A.a3<b3B.ab>b2C.ac2>bc2D.$\frac{1}{a}$<$\frac{1}$

分析 根據(jù)冪函數(shù)的單調(diào)性,可判斷A,根據(jù)不等式的基本性質(zhì),可判斷B,D;舉出反例c=0,可判斷C.

解答 解:y=x3在R上為增函數(shù),若b<a<0,則a3>b3,故A錯(cuò)誤;
ab<b2,故B錯(cuò)誤;
當(dāng)c=0時(shí),ac2=bc2,故C錯(cuò)誤;
ab>0,故不等式兩邊同除以ab可得:$\frac{1}{a}$<$\frac{1}$,故D正確;
故選:D

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了不等式的基本性質(zhì),難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.周期函數(shù)f(x)的定義域?yàn)镽,周期為2,且當(dāng)-1<x≤1時(shí),f(x)=1-x2.若直線y=-x+a與曲線y=f(x)恰有3個(gè)交點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.2k+$\frac{3}{4}$<a<2k+$\frac{5}{4}$,k∈ZB.2k+1<a<2k+3,k∈Z
C.2k+1<a<2k+$\frac{5}{4}$,k∈ZD.2k-$\frac{3}{4}$<a<2k+1,k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知向量$\overrightarrow{a}$=($\sqrt{3}$cosx,cosx),$\overrightarrow$=(0,sinx),$\overrightarrow{c}$=(sinx,cosx),$\overrightarrowv4e4lyh$=(sinx,sinx).
(1)當(dāng)x=$\frac{π}{4}$時(shí),求向量$\overrightarrow{a}$與$\overrightarrow$的夾角θ;
(2)求$\overrightarrow{c}•\overrightarrowd3jkunp$取得最大值時(shí)x的值;
(3)設(shè)函數(shù)f(x)=($\overrightarrow{a}-\overrightarrow$)$•(\overrightarrow{c}+\overrightarrowyixn135)$,將函數(shù)f(x)的圖象向右平移s個(gè)單位長(zhǎng)度,向上平移t個(gè)長(zhǎng)度單位(s,t>0)后得到函數(shù)g(x)的圖象,且g(x)=2sin2x+1;令$\overrightarrow{m}$=(s,t),求|$\overrightarrow{m}$|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某學(xué)校為了增強(qiáng)學(xué)生對(duì)消防安全知識(shí)的了解,舉行了一次消防安全知識(shí)競(jìng)賽.其中一道題是連線題,要求將3種不同的消防工具與它們的用途一對(duì)一連線,規(guī)定:每連對(duì)一條得2分,連錯(cuò)一條扣1分,參賽者必須把消防工具與用途一對(duì)一全部連起來(lái).
(Ⅰ)設(shè)三種消防工具分別為A,B,C,其用途分別為a,b,c,若把 連線方式表示為$(\begin{array}{l}{A^{\;}}{B^{\;}}C\\{b^{\;}}{c^{\;}}a\end{array})$,規(guī)定第一行A,B,C的順序固定不變,請(qǐng)列出所有連線的情況;
(Ⅱ)求某參賽者得分為0分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在平面直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知直線l的極坐標(biāo)方程為:ρsinθ+ρcosθ=2,曲線C的極坐標(biāo)方程為:ρcos2θ=asinθ(a>0),曲線C與直線l的交點(diǎn)為M,N.
(Ⅰ)當(dāng)a=1時(shí),求直線l和曲線C相交的弦長(zhǎng)|MN|;
(Ⅱ)若$\overrightarrow{OM}$•$\overrightarrow{ON}$=0,求△OMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.某銀行推出95577服務(wù)電話(huà),部分業(yè)務(wù)流程如圖,如果我要利用這個(gè)服務(wù)交納電視費(fèi),請(qǐng)問(wèn)按照這個(gè)流程圖,我撥通95577電話(huà)后如何操作( 。
A.按2,按1,按3B.按5,按1,按3C.按0,按2,按1,按3D.按5,按1,按2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知向量$\overrightarrow{a}$=(2,4),$\overrightarrow$=(1,-1),則$\overrightarrow{a}$•(2$\overrightarrow-\overrightarrow{a}$)=-24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知向量|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2.
(Ⅰ)若$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{3}$,求|$\overrightarrow{a}+2\overrightarrow$|;
(Ⅱ)若(2$\overrightarrow{a}-b$)$•(3\overrightarrow{a}+\overrightarrow)$=3,求$\overrightarrow{a}$與$\overrightarrow$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)=$\left\{\begin{array}{l}\sqrt{1-{x^2}},-1≤x<0\\ cosx,0≤x≤\frac{π}{2}\end{array}$的圖象與x軸圍成的封閉圖形的面積為( 。
A.$\frac{π}{4}$+1B.$\frac{5π}{4}$C.$\frac{5}{4}$D.π+1

查看答案和解析>>

同步練習(xí)冊(cè)答案