如圖,平面平面平面,兩條直線a,b分別與平面,,相交于點A,B,C和點D,E,F.已知AB=2cm,DE=4cm,EF=3cm,則AC的長為_______cm

 

【答案】

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,平面PAC⊥平面ABC,△ABC是以AC為斜邊的等腰直角三角形,E,F(xiàn),O分別為PA,PB,AC的中點,AC=16,PA=PC=10.
(Ⅰ)設(shè)G是OC的中點,證明:FG∥平面BOE;
(Ⅱ)證明:在△ABO內(nèi)存在一點M,使FM⊥平面BOE,并求點M到OA,OB的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖(1)直線l∥AB,且與CA,CB分別相交于點E,F(xiàn),EF與AB間的距離是d,點P是線段EF上任意一點,Q是線段AB上任意一點,則|PQ|的最小值等于d.類比上述結(jié)論我們可以得到:在圖(2)中,平面α∥平面ABC,且與DA,DB,DC分別相交于點E,F(xiàn),G,平面α與平面ABC間的距離是m,
a,b分別是平面α與平面ABC內(nèi)的任意一條直線,則a,b間距離的最小值是m.
或P,Q分別是平面α與平面ABC內(nèi)的任意一點,則P,Q間距離的最小值是m.
a,b分別是平面α與平面ABC內(nèi)的任意一條直線,則a,b間距離的最小值是m.
或P,Q分別是平面α與平面ABC內(nèi)的任意一點,則P,Q間距離的最小值是m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,平面ABCD⊥平面ABEF,ABCD是邊長為1的正方形,ABEF是矩形,且AF=
12
,G是線段EF的中點.
(Ⅰ)求證:AG⊥平面BCG;
(Ⅱ)求直線BE與平面ACG所成角的正弦值的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,平面VAD⊥平面ABCD,△VAD是等邊三角形,ABCD是矩形,AB:AD=
2
:1,F(xiàn)是AB的中點.
(1)求VC與平面ABCD所成的角;
(2)求二面角V-FC-B的度數(shù); 
(3)當V到平面ABCD的距離是3時,求B到平面VFC的距離.

查看答案和解析>>

同步練習冊答案