17.函數(shù)f(x)=ex與函數(shù)g(x)=-2x+3的圖象的交點的橫坐標所在的大致區(qū)間是(  )
A.(-1,0)B.$({0,\frac{1}{2}})$C.$({\frac{1}{2},1})$D.(1,2)

分析 題目轉(zhuǎn)化為求函數(shù)h(x)=f(x)-g(x)=ex+2x-3的零點,根據(jù)h($\frac{1}{2}$)h(1)<0,可得函數(shù)h(x) 的零點所在區(qū)間.

解答 解:函數(shù)f(x)=ex與函數(shù)g(x)=-2x+3的圖象的交點的橫坐標,
即求函數(shù)h(x)=f(x)-g(x)=ex+2x-3的零點,
由于函數(shù)h(x)是連續(xù)增函數(shù),且 h($\frac{1}{2}$)=$\sqrt{e}$-2<0,h(1)=e-1>0,
故 h($\frac{1}{2}$)h(41)<0,故函數(shù)h(x) 的零點所在區(qū)間是($\frac{1}{2}$,1),
故選:C.

點評 本題主要考查函數(shù)的零點與方程的根的關(guān)系,函數(shù)零點的判定定理,體現(xiàn)了化歸與轉(zhuǎn)化的數(shù)學思想,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

7.方程$\frac{{x}^{2}}{15-k}$+$\frac{{y}^{2}}{k-9}$=1表示焦點在y軸上的橢圓,則實數(shù)k的取值范圍是(12,15).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知a∈R,則“a>2”是“a≥1”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知tan($\frac{π}{4}$+α)=2,則sin2α=( 。
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知△ABC的三個頂點是A(3,0),B(4,5),C(0,7)
(1)求BC邊上的高所在的直線方程(請用直線的一般方程表示解題結(jié)果)
(2)求BC邊上的中線所在的直線方程(請用直線的一般方程表示解題結(jié)果)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)$f(x)=2{cos^2}(x-\frac{π}{4})-\sqrt{3}$cos2x+1,
(1)求函數(shù)f(x)的最小正周期及對稱軸方程;
(2)若對任意實數(shù)x,不等式|f(x)-m|<2在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.下列各數(shù)85(9)、1000(4)、111111(2)中最小的數(shù)是111111(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.命題“若x>2,則x>1”的逆否命題是(  )
A.若x<2,則x<1B.若x≤2,則x≤1C.若x≤1,則x≤2D.若x<1,則x<2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的圖象如圖所示,則φ=$\frac{π}{6}$.

查看答案和解析>>

同步練習冊答案