“等式sin(α+γ)=sin2β成立”是“α,β,γ成等差數(shù)列”的( 。l件.
A、充分而不必要
B、必要而不充分
C、充分必要
D、既不充分又不必要
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡(jiǎn)易邏輯
分析:根據(jù)等差數(shù)列的性質(zhì)以及充分條件和必要條件的定義進(jìn)行判斷即可.
解答: 解:若“α,β,γ成等差數(shù)列”,則α+γ=2β,此時(shí)等式sin(α+γ)=sin2β成立,
若當(dāng)α=β=0,γ=π,滿足sin(α+γ)=sin2β=0,但“α,β,γ成等差數(shù)列”不成立,
故“等式sin(α+γ)=sin2β成立”是“α,β,γ成等差數(shù)列”的必要不充分條件,
故選:B
點(diǎn)評(píng):本題主要考查充分條件和必要條件的判斷,根據(jù)等差數(shù)列的定義和關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)設(shè)函數(shù)f(x)=a•2x+b•4x,其中常數(shù)a,b滿足ab<0,若f(x+1)>f(x),求實(shí)數(shù)x的取值范圍;
(2)設(shè)函數(shù)f(x)=ln(x+1),若0<f(1-2x)-f(x)<1,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z1=3+4i,z2=1-i,z3=c+(c-2)i(其中i為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)分別為A、B、C.
(1)若∠BAC是銳角,求實(shí)數(shù)c的取值范圍;
(2)若復(fù)數(shù)z滿足|z-z1|=1,求|z-z2|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)+1(A>0,ω>0,0<φ<
π
2
)的周期為π,f(
π
4
)=
3
+1,且f(x)得最大值為3.
(1)寫(xiě)出f(x)的表達(dá)式;
(2)寫(xiě)出函數(shù)f(x)的對(duì)稱中心,對(duì)稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x2-3x+2>0的解集為P,關(guān)于不等式(x-1)(x+a)>0的解集為q,已知p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①已知直線a、b和平面α,若a∥b,且a∥α,則b∥α;
②平面上到一個(gè)定點(diǎn)和一條定直線的距離相等的點(diǎn)的軌跡是一條拋物線;
③已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0),則直線y=
b
a
x+m(m∈R
)與雙曲線有且只有一個(gè)公共點(diǎn);
④若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直.
其中正確命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x∈R,向量
a
=(sin2x , cosx)
,
b
=(1 , 2cosx)
,f(x)=
a
b

(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若α是第二象限角,f(
α
2
)=
4
2
5
cos(α+
π
4
)cos2α+1
,求cosα-sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在復(fù)數(shù)范圍內(nèi)解方程x2+2x+5=0,解為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy內(nèi)作單位圓O,以O(shè)x為始邊作角α、β,它們的終邊與單位圓O的交點(diǎn)為A,B,則
OA
=
 
OB
=
 
,∠AOB=
 

由向量數(shù)量積的定義有
OA
OB
=
 
由向量數(shù)量積的坐標(biāo)表示有
OA
OB
=
 
=
 

于是,cos(α-β)=cosαcosβ+sinαsinβ.

查看答案和解析>>

同步練習(xí)冊(cè)答案