【題目】已知函數(shù).

(Ⅰ) 當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)求函數(shù)在區(qū)間上的最大值.

【答案】(Ⅰ)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(Ⅱ) 見解析

【解析】

(Ⅰ)當(dāng)時(shí),求得函數(shù)的導(dǎo)數(shù),利用導(dǎo)函數(shù)取值的正負(fù),即可得出函數(shù)的單調(diào)性;

(Ⅱ)由 (Ⅰ)知,分類討論得到函數(shù)在區(qū)間上的單調(diào)性,即可求解函數(shù)的最大值,得到答案。

(Ⅰ)由題意,當(dāng)時(shí),函數(shù),

,

,即,即,解得

所以函數(shù),上單調(diào)遞增,

,即,即,解得,

所以函數(shù)上單調(diào)遞減。

即函數(shù) 的單調(diào)遞增區(qū)間為,的單調(diào)遞減區(qū)間為.

(Ⅱ) 由函數(shù),則,

,即,即,解得,

(1)當(dāng),即時(shí),此時(shí)當(dāng)時(shí),,所以上單調(diào)遞減,所以最大值為;

(2)當(dāng),即時(shí),

①當(dāng)時(shí),即時(shí),此時(shí)當(dāng)時(shí),,所以上單調(diào)遞減,所以最大值為;

②當(dāng)時(shí),即時(shí),此時(shí)當(dāng)時(shí),,所以上單調(diào)遞增,當(dāng)時(shí),,所以上單調(diào)遞減,所以最大值為;

③當(dāng)時(shí),即時(shí),此時(shí)當(dāng)時(shí),,所以上單調(diào)遞增,所以最大值為;

(3)當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞減,最大值為,

綜上所述,可得:

當(dāng)時(shí),;

當(dāng)時(shí),

當(dāng)時(shí),.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),),.

(1)若函數(shù)上的最大值為1,求的值;

(2)若存在使得關(guān)于的不等式成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家銷售公司擬各招聘一名產(chǎn)品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.

(I)請(qǐng)將兩家公司各一名推銷員的日工資(單位: 元) 分別表示為日銷售件數(shù)的函數(shù)關(guān)系式;

(II)從兩家公司各隨機(jī)選取一名推銷員,對(duì)他們過去100天的銷售情況進(jìn)行統(tǒng)計(jì),得到如下條形圖。若記甲公司該推銷員的日工資為,乙公司該推銷員的日工資為(單位: 元),將該頻率視為概率,請(qǐng)回答下面問題:

某大學(xué)畢業(yè)生擬到兩家公司中的一家應(yīng)聘推銷員工作,如果僅從日均收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某險(xiǎn)種的基本保費(fèi)為a(單位:元),繼續(xù)購買該險(xiǎn)種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:

上年度出險(xiǎn)次數(shù)

0

1

2

3

4

≥5

保費(fèi)

0.85a

a

1.25a

1.5a

1.75a

2a

隨機(jī)調(diào)查了該險(xiǎn)種的200名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到如下統(tǒng)計(jì)表:

出險(xiǎn)次數(shù)

0

1

2

3

4

≥5

頻數(shù)

60

50

30

30

20

10

(1)記A為事件:“一續(xù)保人本年度的保費(fèi)不高于基本保費(fèi)”,求P(A)的估計(jì)值;

(2)記B為事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)但不高于基本保費(fèi)的160%”,求P(B)的估計(jì)值;

(3)求續(xù)保人本年度平均保費(fèi)的估計(jì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知,若直線于點(diǎn),點(diǎn)是直線上的一動(dòng)點(diǎn),是線段的中點(diǎn),且,點(diǎn)的軌跡為曲線

(1)求曲線的方程;

(2)過點(diǎn)作直線于點(diǎn),交軸于點(diǎn),過作直線,于點(diǎn).試判斷是否為定值?若是,求出其定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年,國家逐步推行全新的高考制度.新高考不再分文理科,某省采用3+3模式,其中語文、數(shù)學(xué)、外語三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門科目中自選3門參加考試(63),每科目滿分100.為了應(yīng)對(duì)新高考,某高中從高一年級(jí)1000名學(xué)生(其中男生550人,女生450人)中,采用分層抽樣的方法從中抽取名學(xué)生進(jìn)行調(diào)查.

1)已知抽取的名學(xué)生中含男生55人,求的值;

2)學(xué)校計(jì)劃在高一上學(xué)期開設(shè)選修中的“物理”和“地理”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的名學(xué)生進(jìn)行問卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目),下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表. 請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有 99%的把握認(rèn)為選擇科目與性別有關(guān)?說明你的理由;

3)在抽取到的女生中按(2)中的選課情況進(jìn)行分層抽樣,從中抽出9名女生,再從這9名女生中抽取4人,設(shè)這4人中選擇“地理”的人數(shù)為,求的分布列及期望.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,已知圓的圓心為,半徑為.以極點(diǎn)為原點(diǎn),極軸方向?yàn)?/span>軸正半軸方向,利用相同單位長度建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù),).

(Ⅰ)寫出圓的極坐標(biāo)方程和直線的普通方程;

(Ⅱ)若直線與圓交于、兩點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

原命題為真,它的否命題為假;

原命題為真,它的逆命題不一定為真;

一個(gè)命題的逆命題為真,它的否命題一定為真;

一個(gè)命題的逆否命題為真,它的否命題一定為真;

⑤“,則的解集為的逆命題.

其中真命題是___________.把你認(rèn)為正確命題的序號(hào)都填在橫線上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓經(jīng)過點(diǎn),離心率為. 已知過點(diǎn)的直線與橢圓交于兩點(diǎn)

(1)求橢圓的方程;

(2)試問軸上是否存在定點(diǎn),使得為定值.若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案