已知拋物線y2=2px(p>0)的焦點(diǎn)F為雙曲線數(shù)學(xué)公式的一個(gè)焦點(diǎn),經(jīng)過(guò)兩曲線交點(diǎn)的直線恰過(guò)點(diǎn)F,則該雙曲線的離心率為_(kāi)_______.


分析:根據(jù)拋物線y2=2px(p>0)的焦點(diǎn)F為雙曲線的一個(gè)焦點(diǎn),可得,利用經(jīng)過(guò)兩曲線交點(diǎn)的直線恰過(guò)點(diǎn)F,可得(c,2c)為雙曲線的一個(gè)點(diǎn),由此即可求出雙曲線的離心率.
解答:由題意,∵拋物線y2=2px(p>0)的焦點(diǎn)F為雙曲線的一個(gè)焦點(diǎn)

∵經(jīng)過(guò)兩曲線交點(diǎn)的直線恰過(guò)點(diǎn)F
,即(c,2c)為雙曲線的一個(gè)點(diǎn)

∴(c2-a2)c2-4a2c2=a2(c2-a2
∴e4-6e2+1=0

∵e>1
∴e=
故答案為:
點(diǎn)評(píng):本題考查拋物線與雙曲線的綜合,考查拋物線與雙曲線的幾何性質(zhì),確定幾何量之間的關(guān)系是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px(p>0).過(guò)動(dòng)點(diǎn)M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,|AB|≤2p.
(1)求a的取值范圍;
(2)若線段AB的垂直平分線交x軸于點(diǎn)N,求△NAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l.
(1)求拋物線上任意一點(diǎn)Q到定點(diǎn)N(2p,0)的最近距離;
(2)過(guò)點(diǎn)F作一直線與拋物線相交于A,B兩點(diǎn),并在準(zhǔn)線l上任取一點(diǎn)M,當(dāng)M不在x軸上時(shí),證明:
kMA+kMBkMF
是一個(gè)定值,并求出這個(gè)值.(其中kMA,kMB,kMF分別表示直線MA,MB,MF的斜率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px(p>0).過(guò)動(dòng)點(diǎn)M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,|AB|≤2p.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•聊城一模)已知拋物線y2=2px(p>0),過(guò)點(diǎn)M(2p,0)的直線與拋物線相交于A,B,
OA
OB
=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px(p>0),M(2p,0),A、B是拋物線上的兩點(diǎn).求證:直線AB經(jīng)過(guò)點(diǎn)M的充要條件是OA⊥OB,其中O是坐標(biāo)原點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案