某市規(guī)定:出租車3公里內(nèi)起步價(jià)8元(即不超過3公里,一律收費(fèi)8元),若超過3公里,除起步價(jià)外,超過部分再按1.5元/公里收費(fèi)計(jì)價(jià).假如一乘客與司機(jī)約定以元為單位計(jì)費(fèi)(按四舍五入的原則不找零),下車后付了16元,則該乘客里程的范圍是
 
考點(diǎn):分段函數(shù)的應(yīng)用
專題:應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:求出符合題意的函數(shù)關(guān)系式,其形式是一個(gè)分段函數(shù),再利用函數(shù)根據(jù)車費(fèi),即可計(jì)算乘坐里程.
解答: 解:由題意,乘車費(fèi)用關(guān)于乘車?yán)锍痰暮瘮?shù)關(guān)系為
f(x)=
8,x≤3
8+1.5(x-3),x>3

則由15.5≤8+1.5(x-3)<16.5,可得8≤x<
26
3
,
即有乘車?yán)锍痰姆秶荹8,
26
3
).
故答案為:[8,
26
3
).
點(diǎn)評(píng):本題考查分段函數(shù)的應(yīng)用,分段模型是解決實(shí)際問題的很重要的函數(shù)模型,其特點(diǎn)是在不同的自變量取值范圍內(nèi),函數(shù)解析式不同.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知下列命題,其中正確命題的個(gè)數(shù)是( 。
①以直角三角形的一邊為對(duì)稱軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體是圓錐
②以直角梯形的一腰為對(duì)稱軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體是圓臺(tái)
③圓柱、圓錐、圓臺(tái)的底面都是圓
④一個(gè)平面去截一個(gè)圓錐得到一個(gè)圓錐和一個(gè)圓臺(tái).
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

動(dòng)點(diǎn)A到定點(diǎn)F1(-2,0)和2(2,0)的距離的和為4,則動(dòng)點(diǎn)A的軌跡為(  )
A、橢圓B、線段
C、無圖形D、兩條射線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(1+
x
2
n(n∈N*)展開式中前三項(xiàng)的系數(shù)分別為a0、a1、a2,且12a0a2=5a12
(1)求n的值;
(2)求展開式中系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a、b為實(shí)數(shù),則“a2
1
b2
”是“-1<ab<1”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某奇石廠為適應(yīng)市場(chǎng)需求,投入98萬元引進(jìn)我國先進(jìn)設(shè)備,并馬上投入生產(chǎn).第一年需各種費(fèi)用12萬元,從第二年開始,每年所需費(fèi)用會(huì)比上一年增加4萬元.而每年因引入該設(shè)備可獲得年利潤為50萬元.請(qǐng)你根據(jù)以上數(shù)據(jù),解決以下問題:
(1)引進(jìn)該設(shè)備多少年后,該廠開始盈利?
(2)引進(jìn)該設(shè)備若干年后,該廠提出兩種處理方案:
第一種:年平均利潤達(dá)到最大值時(shí),以26萬元的價(jià)格賣出.
第二種:盈利總額達(dá)到最大值時(shí),以8萬元的價(jià)格賣出.問哪種方案較為合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log2(4+3x-x2)的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x∈R,x-2>0,命題q:?x∈R,x2>x,則下列說法中正確的是( 。
A、命題p∨q是假命題
B、命題p∧q是真命題
C、命題p∧(¬q)是真命題
D、命題p∨(¬q)是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1-
a
3x+1
是奇函數(shù).
(1)求a的值,并用定義證明f(x)是R上的增函數(shù);
(2)當(dāng)x∈[-1,2]時(shí),求函數(shù)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案