【題目】 某工廠甲、乙兩個(gè)車間包裝同一種產(chǎn)品,在自動(dòng)包裝傳送帶上,每隔30分鐘抽一包產(chǎn)品,稱其重量是否合格,分別記錄抽查數(shù)據(jù)如下(單位:千克)

甲車間:102,101,99,98,103,9899.

乙車間:110,115,90,85,75,115,110.

1)這種抽樣方式是何種抽樣方法;

2)試根據(jù)這組數(shù)據(jù)說明哪個(gè)車間產(chǎn)品較穩(wěn)定?

【答案】1)系統(tǒng)抽樣方法.(2)甲車間產(chǎn)品較穩(wěn)定.

【解析】

1)由系統(tǒng)抽樣的定義可判斷出這種抽樣方式是何種抽樣方法;

2)分別求出兩個(gè)車間數(shù)據(jù)的平均數(shù),進(jìn)而可求出兩車間數(shù)據(jù)的方差,從而可判斷哪個(gè)車間產(chǎn)品更穩(wěn)定.

解:(1)因?yàn)橛邢嗤拈g隔,符合系統(tǒng)抽樣的特點(diǎn),則這種方法是系統(tǒng)抽樣方法.

2)甲車間的平均數(shù);

乙車間的平均數(shù);

則甲車間的方差為;

乙車間的方差為

因?yàn)?/span>,所以甲車間產(chǎn)品較穩(wěn)定.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將參加夏令營(yíng)的400名學(xué)生編號(hào)為:001,002,…,400,采用系統(tǒng)抽樣的方法抽取一個(gè)容量為40的樣本,且隨機(jī)抽得的號(hào)碼為003,這400名學(xué)生分住在三個(gè)營(yíng)區(qū),從001到180在第一營(yíng)區(qū),從181到295在第二營(yíng)區(qū),從296到400在第三營(yíng)區(qū),三個(gè)營(yíng)區(qū)被抽中的人數(shù)分別為( )

A. 18,12,10 B. 20,12,8 C. 17,13,10 D. 18,11,11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖.

1)計(jì)算甲班的樣本方差;

2)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為F1F2,過點(diǎn)F1的直線與C交于A,B兩點(diǎn).ABF2的周長(zhǎng)為,且橢圓的離心率為.

1)求橢圓C的標(biāo)準(zhǔn)方程:

2)設(shè)點(diǎn)P為橢圓C的下頂點(diǎn),直線PA,PBy2分別交于點(diǎn)M,N,當(dāng)|MN|最小時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將邊長(zhǎng)為3的正的各邊三等分,過每個(gè)分點(diǎn)分別作另外兩邊的平行線,稱的邊及這些平行線所交的10個(gè)點(diǎn)為格點(diǎn).若在這10個(gè)格點(diǎn)中任取個(gè)格點(diǎn),一定存在三個(gè)格點(diǎn)能構(gòu)成一個(gè)等腰三角形(包括正三角形).的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點(diǎn)都在圓C.

1)求圓C的方程;

2)若圓C與直線交于A,B兩點(diǎn),且,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠B,AB8,點(diǎn)DBC邊上,CD2cosADC.

1)求sinBAD;

2)求BDAC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為中心,以坐標(biāo)軸為對(duì)稱軸的幫圓C經(jīng)過點(diǎn)M(2,1),N.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)經(jīng)過點(diǎn)M作傾斜角互補(bǔ)的兩條直線,分別與橢圓C相交于異于M點(diǎn)的A,B兩點(diǎn),當(dāng)△AMB面積取得最大值時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(m2m-1)x-5m-3m為何值時(shí),f(x):

(1)是冪函數(shù);

(2)是正比例函數(shù);

(3)是反比例函數(shù);

(4)是二次函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案