【題目】如圖,四棱錐PABCD的底面是矩形,側(cè)面PAD為等邊三角形,AB,AD, PB.

(1)求證:平面PAD⊥平面ABCD;

(2)M是棱PD上一點,三棱錐MABC的體積為1.記三棱錐PMAC的體積為,三棱錐MACD的體積為,求.

【答案】(1)詳見解析;(2).

【解析】

1)由勾股定理可得,又,可得平面,可得平面平面;

2)由三棱錐與三棱錐等底同高,可得,又由正三角形的高也就是三棱錐的高,計算出三棱錐的體積,從而得出,再得出的值.

1)由已知,得,于是,故

因為四邊形ABCD是矩形,所以,又,所以平面,因為平面,

所以:平面平面.

2)依題意,得三棱錐與三棱錐等底同高,所以,

又正三角形中,,所以正三角形的高為,

由(1)得正三角形的高也就是三棱錐的高,

所以,

所以,故.

故得解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某租賃公司擁有汽車100.當(dāng)每輛車的月租金為3000元時,可全部租出.當(dāng)每輛車的月租金每增加元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費元,未租出的車每輛每月需要維護費.

1)當(dāng)每輛車的月租金定為元時,能租出多少輛車?

2)當(dāng)每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】世界那么大,我想去看看,處在具有時尚文化代表的大學(xué)生們旅游動機強烈,旅游可支配收入日益增多,可見大學(xué)生旅游是一個巨大的市場.為了解大學(xué)生每年旅游消費支出(單位:百元)的情況,相關(guān)部門隨機抽取了某大學(xué)的名學(xué)生進行問卷調(diào)查,并把所得數(shù)據(jù)列成如下所示的頻數(shù)分布表:

組別

頻數(shù)

(Ⅰ)求所得樣本的中位數(shù)(精確到百元);

(Ⅱ)根據(jù)樣本數(shù)據(jù),可近似地認(rèn)為學(xué)生的旅游費用支出服從正態(tài)分布,若該所大學(xué)共有學(xué)生人,試估計有多少位同學(xué)旅游費用支出在元以上;

(Ⅲ)已知樣本數(shù)據(jù)中旅游費用支出在范圍內(nèi)的名學(xué)生中有名女生, 名男生,現(xiàn)想選其中名學(xué)生回訪,記選出的男生人數(shù)為,求的分布列與數(shù)學(xué)期望.

附:若,則

, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)f(x)的最小正周期及單調(diào)減區(qū)間;

(2)若α∈(0,π),且f,求tan的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐中,,平面和平面所成角為,則三棱錐外接球的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù).

(1) 求實數(shù)的值;

(2) 判斷并用定義證明該函數(shù)在定義域上的單調(diào)性;

(3) 若方程內(nèi)有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為圓上一動點,圓心關(guān)于軸的對稱點為,點分別是線段上的點,且.

(1)求點的軌跡方程;

(2)直線與點的軌跡只有一個公共點,且點在第二象限,過坐標(biāo)原點且與垂直的直線與圓相交于兩點,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的離心率是,過點的動直線與橢圓相交于兩點,當(dāng)直線軸平行時,直線被橢圓截得的線段長為.

(Ⅰ)求橢圓的方程;

(Ⅱ)在軸上是否存在異于點的定點,使得直線變化時,總有?若存在求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)fx)=Asinωx+1A0,ω0)的最大值為3,其圖象相鄰兩條對稱軸之間的距離為

1)求函數(shù)fx)的解析式;

2)求函數(shù)yfx)的單調(diào)增區(qū)間;

3)設(shè)α∈(0),則f)=2,求α的值.

查看答案和解析>>

同步練習(xí)冊答案