Loading [MathJax]/jax/output/CommonHTML/jax.js
12.已知單位向量a,\overrightarrow滿足:|a+2|=3,則:|a-2\overrightarrow|=( �。�
A.2B.5C.3D.7

分析 運(yùn)用向量數(shù)量積的性質(zhì):向量的平方即為模的平方,可得a\overrightarrow=-12,再由平方計(jì)算即可得到所求值.

解答 解:單位向量a滿足:|a+2|=3,
可得(a+22=3,
化為a2+4a\overrightarrow+42=3,
即為1+4a+4=3,
可得a\overrightarrow=-12,
則|a-2|=a22=a24a+42=1+4×12+4=7
故選:D.

點(diǎn)評(píng) 本題考查向量的數(shù)量積的性質(zhì),主要是向量的平方即為模的平方,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=|14x2+12ax+14|(a>1)
(Ⅰ)(i)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
     (ii)若函數(shù)g(x)=f(x)-12x-a恰有三個(gè)零點(diǎn),求a的值;
(Ⅱ)記M(a,t)為函數(shù)f(x)在區(qū)間[t,t+2](t∈R)上的最大值,求M(a,t)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),g(x)≠0,當(dāng)x<0時(shí),f′(x)g(x)-f(x)g′(x)>0,且f(-3)=0,則不等式fxgx<0的解集是( �。�
A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C:x23+y2=1,過點(diǎn)M(2,0)任作一條直線與C交于不同的兩點(diǎn)A、B.
(1)求△OAB的面積的最大值;
(2)若橢圓C的左頂點(diǎn)為N,直線l:x=32,直線NA和NB交直線l與PQ兩點(diǎn),設(shè)A、B、P、Q的縱坐標(biāo)分別為y1、y2、y3、y4.求證:1y1+1y2=1y3+1y4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.拋物線y2=4x的焦點(diǎn)F關(guān)于直線y=2x的對(duì)稱點(diǎn)坐標(biāo)為(-35,45).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ln(x+1)+mx(m∈R).
(Ⅰ)當(dāng)m≠0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)有這樣的結(jié)論:若函數(shù)p(x)的圖象是在區(qū)間[a,b]上連續(xù)不斷的曲線,且在區(qū)間(a,b)內(nèi)可導(dǎo),則
存在x0∈(a,b),使得p′(x0)=pbpaba.已知函數(shù)f(x)在(x1,x2)上可導(dǎo)(其中x2>x1>-1),若
函數(shù)g(x)=fx1fx2x1x2xx1+fx1
(1)證明:對(duì)任意x∈(x1,x2),都有f(x)>g(x);
(2)已知正數(shù)λ1,λ2滿足λ12=1.求證:對(duì)任意的實(shí)數(shù)x1,x2,若x2>x1>-1時(shí),都有f(λ1x12x2)>λ1f(x1)+λ2f(x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=mlnx(m∈R).
(1)若函數(shù)y=f(x)+x的最小值為0,求m的值;
(2)設(shè)函數(shù)g(x)=f(x)+mx2+(m2+2)x,試求g(x)的單調(diào)區(qū)間;
(3)試給出一個(gè)實(shí)數(shù)m的值,使得函數(shù)y=f(x)與h(x)=x12x(x>0)的圖象有且只有一條公切線,并說明此時(shí)兩函數(shù)圖象有且只有一條公切線的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知p:方程x2+mx+1=0有兩個(gè)不相等的實(shí)根;q:不等式x+mx-2>0在x∈[2,+∞)上恒成立,若¬p為真命題,p∧q為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在邊長為2的等邊三角形△ABC中,點(diǎn)M在邊AB上,且滿足BM=3MA,則CMCB=(  )
A.52B.83C.72D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案