2.已知a、b、c都是正數(shù),求證ab(a+b)+bc(b+c)+ca(c+a)≥6abc.

分析 將不等式的左邊化為a(b2+c2)+b(c2+a2)+c(a2+b2),運(yùn)用重要不等式:a2+b2≥2ab,即可得到證明.

解答 證明:由a、b、c都是正數(shù),
ab(a+b)+bc(b+c)+ca(c+a)
=a(b2+c2)+b(c2+a2)+c(a2+b2
≥a•2bc+b•2ca+c•2ab=6abc,
當(dāng)且僅當(dāng)a=b=c時(shí),取得等號(hào).
則ab(a+b)+bc(b+c)+ca(c+a)≥6abc.

點(diǎn)評(píng) 本題考查不等式的證明,注意運(yùn)用重要不等式:a2+b2≥2ab,考查推理能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某衛(wèi)視的大型娛樂節(jié)目現(xiàn)場,所有參演的節(jié)目都由甲、乙、丙三名專業(yè)老師投票決定是否通過進(jìn)入下一輪,甲、乙、丙三名老師都有“通過”“待定”“淘汰”三類票各一張,每個(gè)節(jié)目投票時(shí),甲、乙、丙三名老師必須且只能投一張票,每人投三類票中的任意一類票的概率均為$\frac{1}{3}$,且三人投票相互沒有影響,若投票結(jié)果中至少有兩張“通過”票,則該節(jié)目獲得“通過”,否則該節(jié)目不能獲得“通過”.
(I)求某節(jié)目的投票結(jié)果獲“通過”的概率;
(Ⅱ)記某節(jié)目投票結(jié)果中所含“通過”和“待定”票票數(shù)之和為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.參數(shù)方程$\left\{\begin{array}{l}{x=5}\\{y=sinθ}\end{array}\right.$(θ為參數(shù))表示的曲線是( 。
A.一條直線B.兩條直線C.一條射線D.一條線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x-a-lnx(a∈R).
(1)若f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍;
(1)證明:若0<x1<x2,則$\frac{f({x}_{1})-f({x}_{2})}{{x}_{2}-{x}_{1}}$<$\frac{1}{{x}_{1}({x}_{1}+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知x,y都是正實(shí)數(shù),求證:
(1)$\frac{x}{y}$$+\frac{y}{x}$≥2;
(2)(x+y)(x2+y2)(x3+y3)≥8x3y3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.給定橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),稱圓C1:x2+y2=a2+b2為橢圓C的“伴隨圓”. 已知點(diǎn)A(2,1)是橢圓G:x2+4y2=m上的點(diǎn).
(1)若過點(diǎn)$P(0,\sqrt{10})$的直線l與橢圓G有且只有一個(gè)公共點(diǎn),求l被橢圓G的伴隨圓G1所截得的弦長;
(2)橢圓G上的B,C兩點(diǎn)滿足4k1•k2=-1(其中k1,k2是直線AB,AC的斜率),求證:B,C,O三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某著名歌星在某地舉辦一次歌友會(huì),有1000人參加,每人一張門票,每張100元.在演出過程中穿插抽獎(jiǎng)活動(dòng),第一輪抽獎(jiǎng)從這1000張票根中隨機(jī)抽取10張,其持有者獲得價(jià)值1000元的獎(jiǎng)品,并參加第二輪抽獎(jiǎng)活動(dòng).第二輪抽獎(jiǎng)由第一輪獲獎(jiǎng)?wù)擢?dú)立操作按鈕,電腦隨機(jī)產(chǎn)生兩個(gè)實(shí)數(shù)x,y(x,y∈[0,4]),若滿足y≥$\frac{8}{5}x$,電腦顯示“中獎(jiǎng)”,則抽獎(jiǎng)?wù)咴俅潍@得特等獎(jiǎng)獎(jiǎng)金;否則電腦顯示“謝謝”,則不獲得特等獎(jiǎng)獎(jiǎng)金.
(Ⅰ)已知小明在第一輪抽獎(jiǎng)中被抽中,求小明在第二輪抽獎(jiǎng)中獲獎(jiǎng)的概率;
(Ⅱ)設(shè)特等獎(jiǎng)獎(jiǎng)金為a元,小李是此次活動(dòng)的顧客,求小李參加此次活動(dòng)獲益的期望;若該歌友會(huì)組織者在此次活動(dòng)中獲益的期望值是至少獲得70000元,求a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知a,b,c,d都是實(shí)數(shù),且a2+b2=1,c2+d2=4,
求證:|ac+bd|≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某外語學(xué)校英語班有A1、A2兩位同學(xué),日語班有B1、B2、B3三位同學(xué),共5人報(bào)名奧運(yùn)會(huì)志愿者,現(xiàn)從中選出懂英語、日語的志愿者各1人,組成一個(gè)小組.
(1)寫出所有可能的結(jié)果;
(2)求A2被選中的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案