12.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一條漸近線與函數(shù)y=lnx+ln2+1的圖象相切,則雙曲線的離心率等于( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{5}$

分析 由函數(shù)的導數(shù)的幾何意義可知:則漸近線的斜率為k=$\frac{a}$=$\frac{{y}_{0}}{{x}_{0}}$,則$\frac{ln{x}_{0}+ln2+1}{{x}_{0}}$=$\frac{1}{{x}_{0}}$,解得:x0=$\frac{1}{2}$,即可求得b=2a,雙曲線的離心率e=$\frac{c}{a}$=$\sqrt{1+\frac{^{2}}{{a}^{2}}}$=$\sqrt{5}$.

解答 解:由函數(shù)y=lnx+ln2+1,(x>0),求導y′=$\frac{1}{x}$,設漸近線與函數(shù)的切點為P(x0,y0),
則漸近線的斜率為k=$\frac{a}$=$\frac{{y}_{0}}{{x}_{0}}$,
∴$\frac{ln{x}_{0}+ln2+1}{{x}_{0}}$=$\frac{1}{{x}_{0}}$,解得:x0=$\frac{1}{2}$,
∴$\frac{a}$=$\frac{1}{\frac{1}{2}}$=2,b=2a,
雙曲線的離心率e=$\frac{c}{a}$=$\sqrt{1+\frac{^{2}}{{a}^{2}}}$=$\sqrt{5}$,
故選D.

點評 本題考查導數(shù)的幾何意義及雙曲線的簡單幾何性質(zhì),考查直線的斜率公式,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PA⊥PC,底面ABCD為菱形,G為PC中點,E、F分別為AB、PB上一點,△BCE的面積為6$\sqrt{3},AB=4AE=4\sqrt{2},AC=4\sqrt{6}$,PB=4PF.
(1)求證:AC⊥DF;
(2)求證:EF∥平面BDG;
(3)求三棱錐B-CEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.閱讀如圖所示程序框圖.若輸入的x=3,則輸出的y的值為( 。
A.40B.30C.25D.24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若a,b是異面直線,P是a,b外的一點,有以下四個命題
①過P點一定存在直線l與a,b都相交;
②過P點一定存在平面與a,b都平行;
③過P點可作直線與a,b都垂直;
④過P點可作直線與a,b所成角都等于50°.
這四個命題中正確命題的序號是( 。
A.B.C.③④D.①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設x,y滿足約束條件$\left\{\begin{array}{l}x-y≥1\\ x+y≤4\\ x≥0\\ y≥0\end{array}\right.$則z=x-3y的取值范圍為[-2,4].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.函數(shù)$y=\frac{x}{1-cosx}$的導數(shù)是( 。
A.$\frac{1-cosx-xsinx}{1-cosx}$B.$\frac{1-cosx-xsinx}{{{{(1-cosx)}^2}}}$
C.$\frac{1-cosx+sinx}{{{{(1-cosx)}^2}}}$D.$\frac{1-cosx+xsinx}{{{{(1-cosx)}^2}}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知命題p:方程$\frac{x^2}{2m}+\frac{y^2}{1-m}=1$表示焦點在y軸上的橢圓,命題q:雙曲線$\frac{x^2}{5}-\frac{y^2}{m}=1$的離心率e∈(1,2),若p∨q為真,p∧q為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設圓x2+y2+2x-15=0的圓心為A,直線l過點B(1,0)且與x軸不重合,l交圓A于C,D兩點,過B作AC的平行線交AD于點E,求點E的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在一次實驗中,測得(x,y)的四組值分別是A(1,2),B(2,3),C(3,4),D(4,5),則x與y之間的回歸直線方程為( 。
A.$\widehat{y}$=x+1B.$\widehat{y}$=x+2C.$\widehat{y}$=2x+1D.$\widehat{y}$=x-1

查看答案和解析>>

同步練習冊答案