【題目】已知函數(shù)f(x)= ,若方程f(x)=a有四個不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 則x3(x1+x2)+ 的取值范圍是(
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)

【答案】B
【解析】解:作函數(shù)f(x)= ,的圖象如下,
由圖可知,x1+x2=﹣2,x3x4=1;1<x4≤2;
故x3(x1+x2)+ =﹣ +x4 ,
其在1<x4≤2上是增函數(shù),
故﹣2+1<﹣ +x4≤﹣1+2;
即﹣1<﹣ +x4≤1;
故選B.
作函數(shù)f(x)= 的圖象如下,由圖象可得x1+x2=﹣2,x3x4=1;1<x4≤2;從而化簡x3(x1+x2)+ ,利用函數(shù)的單調(diào)性求取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知上的偶函數(shù),當時, .

1)當時,求的解析式;

2)當時,試比較的大;

3)求最小的整數(shù),使得存在實數(shù),對任意的,都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列五個命題: ①函數(shù) 的一條對稱軸是x= ;
②函數(shù)y=tanx的圖象關(guān)于點( ,0)對稱;
③正弦函數(shù)在第一象限為增函數(shù);
④若 ,則x1﹣x2=kπ,其中k∈Z;
⑤函數(shù)f(x)=sinx+2|sinx|,x∈[0,2π]的圖象與直線y=k有且僅有兩個不同的交點,則k的取值范圍為(1,3).
以上五個命題中正確的有(填寫所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P—ABCD中,PD底面ABCD,AB//DC,ADDCAB=AD=1,DC=2,PD=,M為棱PB的中點.

(1)證明:DM平面PBC;

(2)求二面角A—DM—C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

(1)當,且時,判斷函數(shù)是否存在極值,若存在,求出極值點;若不存在,說明理由;

(2)若,對任意的正整數(shù),當時,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 =1(a>b>0)的離心率為 ,坐標原點O到過點A(0,﹣b)和B(a,0)的直線的距離為 .又直線y=kx+m(k≠0,m≠0)與該橢圓交于不同的兩點C,D.且C,D兩點都在以A為圓心的同一個圓上.
(1)求橢圓的方程;
(2)求△ABC面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓O的方程為x2+y2=4,P是圓O上的一個動點,若線段OP的垂直平分線總是被平面區(qū)域|x|+|y|≥a覆蓋,則實數(shù)a的取值范圍是(
A.0≤a≤2
B.
C.0≤a≤1
D.a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,奇函數(shù)的個數(shù)為( ) ①y=x2sinx ②y=sinx , x ③y=xcosxx ④y=tanx
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項和為Sn , 若對于任意的n∈N* , 都有Sn=2an﹣3n.
(1)求證{an+3}是等比數(shù)列
(2)求數(shù)列{an}的通項公式;
(3)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案