【題目】如圖,已知分別是邊長為12的正三角形,,四邊形為直角梯形,且,點的重心,中點,平面,為線段上靠近點的三等分點.

(1)求證:平面;

(2)若二面角的余弦值為,試求異面直線所成角的余弦值.

【答案】(1)見解析(2)

【解析】分析:(1)并延長交,連,由三角形的重心的條件及題意可得,故,再根據(jù)線面平行的判定定理可得結(jié)論.(2)由題意得兩兩垂直,由此建立空間直角坐標(biāo)系設(shè)結(jié)合條件求得平面的法向量為,又平面的法向量為,根據(jù)二面角的余弦值為可求得,進(jìn)而可求得異面直線所成角的余弦值.

詳解:(1)證明:在中,連并延長交,連

因為點的重心,

所以,且中點.

,

所以

所以

中點,

所以

所以,

所以,,四點共面,

平面,平面

所以平面

(2)由題意,平面,即平面,

平面,

所以

因為平面平面,且交線為,

所以平面

又四邊形為直角梯形,,,

所以,

所以平面

因為,

所以平面平面,

分別是邊長為12的正三角形,

故以為原點,軸,軸,軸建立如圖所示的空間直角坐標(biāo)系

設(shè),則,,,,

因為,

所以,,

設(shè)平面的一個法向量為,

,得,

,得

又平面的法向量

由題意得,

解得

,,

所以

所以異面直線所成角的余弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為建設(shè)美麗鄉(xiāng)村,政府欲將一塊長12百米,寬5百米的矩形空地ABCD建成生態(tài)休閑園,園區(qū)內(nèi)有一景觀湖EFG(圖中陰影部分).以AB所在直線為x軸,AB的垂直平分線為y軸,建立平面直角坐標(biāo)系xOy(如圖所示).景觀湖的邊界曲線符合函數(shù)模型.園區(qū)服務(wù)中心P在x軸正半軸上,PO=百米.

(1)若在點O和景觀湖邊界曲線上一點M之間修建一條休閑長廊OM,求OM的最短長度;

(2)若在線段DE上設(shè)置一園區(qū)出口Q,試確定Q的位置,使通道直線段PQ最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是由個有序?qū)崝?shù)構(gòu)成的一個數(shù)組,記作:.其中稱為數(shù)組的“元”,的下標(biāo).如果數(shù)組中的每個“元”都來自數(shù)組中不同下標(biāo)的“元”則稱的子數(shù)組.定義兩個數(shù)組的關(guān)系數(shù)為.

1)若,,設(shè)的含有兩個“元”的子數(shù)組,求的最大值及此時的數(shù)組;

2)若,,且,的含有三個“元”的子數(shù)組,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高鐵、網(wǎng)購、移動支付和共享單車被譽為中國的“新四大發(fā)明”,彰顯出中國式創(chuàng)新的強勁活力.某移動支付公司從我市移動支付用戶中隨機抽取100名進(jìn)行調(diào)查,得到如下數(shù)據(jù):

每周移動支付次數(shù)

1次

2次

3次

4次

5次

6次及以上

10

8

7

3

2

15

5

4

6

4

6

30

合計

15

12

13

7

8

45

(1)把每周使用移動支付6次及6次以上的用戶稱為“移動支付達(dá)人”,按分層抽樣的方法,在我市所有“移動支付達(dá)人”中,隨機抽取6名用戶

求抽取的6名用戶中,男女用戶各多少人;

從這6名用戶中抽取2人,求既有男“移動支付達(dá)人”又有女“移動支付達(dá)人”的概率.

(2)把每周使用移動支付超過3次的用戶稱為“移動支付活躍用戶”,填寫下表,問能否在犯錯誤概率不超過0.01的前提下,認(rèn)為“移動支付活躍用戶”與性別有關(guān)?

P(χ2k)

0.100

0.050

0.010

k

2.706

3.841

.635

非移動支付活躍用戶

移動支付活躍用戶

合計

合計

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有120粒試驗種子需要播種,現(xiàn)有兩種方案:方案一:將120粒種子分種在40個坑內(nèi),每坑3粒;方案二:120粒種子分種在60個坑內(nèi),每坑2粒 如果每粒種子發(fā)芽的概率為0.5,并且,若一個坑內(nèi)至少有1粒種子發(fā)芽,則這個坑不需要補種;若一個坑內(nèi)的種子都沒發(fā)芽,則這個坑需要補種(每個坑至多補種一次,且第二次補種的種子顆粒同第一次).假定每個坑第一次播種需要2元,補種1個坑需1元;每個成活的坑可收貨100粒試驗種子,每粒試驗種子收益1元.

(1)用表示播種費用,分別求出兩種方案的的數(shù)學(xué)期望;

(2)用表示收益,分別求出兩種方案的收益的數(shù)學(xué)期望;

(3)如果在某塊試驗田對該種子進(jìn)行試驗,你認(rèn)為應(yīng)該選擇哪種方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),圓與圓外切于原點,且兩圓圓心的距離,以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系.

(1)求圓和圓的極坐標(biāo)方程;

(2)過點的直線、與圓異于點的交點分別為點和點,與圓異于點的交點分別為點和點,且.求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)處取得極值,對恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】古代“五行”學(xué)認(rèn)為:“物質(zhì)分金、木、土、水、火五種屬性,金克木,木克土,土克水,水克火,火克金.”將五種不同屬性的物質(zhì)任意排成一列,但排列中屬性相克的兩種物質(zhì)不相鄰,則這樣的排列方法有

A.5B.10

C.20D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

1當(dāng)時,求函數(shù)單調(diào)區(qū)間和極值;

2設(shè)對任意,都有

求實數(shù)的取值范圍

查看答案和解析>>

同步練習(xí)冊答案