已知點M在橢圓D:上,以M為圓心的圓與x軸相切于橢圓的右焦點,若圓M與y軸相交于A,B兩點,且△ABM是邊長為的正三角形.
(Ⅰ)求橢圓D的方程;
(Ⅱ)設P是橢圓D上的一點,過點P的直線l交x軸于點F(-1,0),交y軸于點Q,若=2,求直線l的斜率;
(Ⅲ)過點G(0,-2)作直線GK與橢圓N:左半部分交于H,K兩點,又過橢圓N的右焦點F1做平行于HK的直線交橢圓N于R,S兩點,試判斷滿足|GH|·|GK|=3|RF1|·|F1S|的直線GK是否存在?請說明理由.
科目:高中數學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
2
| ||
3 |
QP |
PF |
3x2 |
a2 |
4y2 |
b2 |
查看答案和解析>>
科目:高中數學 來源:山東省模擬題 題型:解答題
查看答案和解析>>
科目:高中數學 來源:不詳 題型:解答題
x2 |
a2 |
y2 |
b2 |
2
| ||
3 |
QP |
PF |
3x2 |
a2 |
4y2 |
b2 |
查看答案和解析>>
科目:高中數學 來源:2012年山東省青島市高考數學一模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com