【題目】已知,.
(1)當時,求;
(2)若,求實數(shù)a的取值范圍.
【答案】(1)(2)
【解析】
(1)化簡集合,利用交集運算即可求解;(2)法一,利用補集的思想求解,求出符合的a的取值范圍,對其求補集即可;法二,等價于集合中有與集合不一樣的元素,即中方程有解,且至少有一解不等于或,分情況討論即可求解.
(1) ,
當時, ,故.
(2)(法一)若,則
∵,
∴集合 有以下三種情況:
①當 時,,即,
∴或.
②當是單元素集時,,或.
若,則,不符合題意;若,則.
③當時,是方程的兩根,
∴,解得.
綜上可得a的取值范圍為.
(法二)∵,
又∵
∴中方程有解,且至少有一解不等于或.
∴,即.
此時,可分三種情況:
①當時, ,滿足;
②當時,,不合題意;
③當時,中有兩個元素,若,則,故.
綜上,實數(shù)a的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)在區(qū)間上的值域;
(2)當時,試討論函數(shù)的單調(diào)性;
(3)若對任意,存在,使得不等式成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)是定義在R上的函數(shù),對任意實數(shù)x,有f(1﹣x)=x2﹣3x+3.
(1)求函數(shù)的解析式;
(2)若函數(shù)在g(x)=f(x)﹣(1+2m)x+1(m∈R)在上的最小值為﹣2,求m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下有四個說法:
①若、為互斥事件,則;
②在中,,則;
③和的最大公約數(shù)是;
④周長為的扇形,其面積的最大值為;
其中說法正確的個數(shù)是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內(nèi)角A= ,P為△ABC的外心,若 =λ1 +2λ2 ,其中λ1與λ2為實數(shù),則λ1+λ2的最大值為( )
A.
B.1﹣
C.
D.1+
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下是某地搜集到的新房屋的銷售價格和房屋的面積的數(shù)據(jù):
(1)畫出數(shù)據(jù)對應的散點圖;
(2)求線性回歸方程,并在散點圖中加上回歸直線;
(3)據(jù)(2)的結(jié)果估計當房屋面積為時的銷售價格.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某租賃公司擁有汽車100輛.當每輛車的月租金為3000元時,可全部租出.當每輛車的月租金每增加元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費元,未租出的車每輛每月需要維護費元.
(1)當每輛車的月租金定為元時,能租出多少輛車?
(2)當每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市調(diào)研考試后,某校對甲、乙兩個文科班的數(shù)學考試成績進行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優(yōu)秀的概率為.
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 110 |
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99%的可靠性要求,能否認為“成績與班級有關(guān)系”;
(3)若按下面的方法從甲班優(yōu)秀的學生中抽取一人:把甲班優(yōu)秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號.試求抽到9號或10號的概率.
參考公式及數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)集A由實數(shù)構(gòu)成:且滿足:若,則
(1)若,試證明A中還有另外兩個元素;
(2)集合A是否為雙元素集合,并說明理由;
(3)若集合A是有限集,求集合A中所有元素的積。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com