已知函數(shù)f(x)=3-2|x|,g(x)=x2,構造函數(shù)F(x)=
g(x),f(x)≥g(x)
f(x),g(x)≥f(x)
,那么函數(shù)y=F(x)( 。
A、有最大值1,最小值-1
B、有最小值-1,無最大值
C、有最大值1,無最小值
D、有最大值3,最小值1
考點:函數(shù)的最值及其幾何意義
專題:計算題,作圖題,函數(shù)的性質及應用
分析:由g(x)-f(x)=x2-3+2|x|≥0得|x|≥1,從而可得F(x)=
x2,|x|≤1
3-2|x|,|x|≥1
,作函數(shù)圖象求解.
解答: 解:由g(x)-f(x)=x2-3+2|x|≥0得,
|x|≥1;
故F(x)=
x2,|x|≤1
3-2|x|,|x|≥1
;
故作F(x)=
x2,|x|≤1
3-2|x|,|x|≥1
的圖象如下,

故有最大值1,沒有最小值.
故選C.
點評:本題考查了函數(shù)的圖象的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=lnx+
1
3
x的零點所在的區(qū)間是(  )
A、(1,+∞)
B、(
1
e
,1)
C、(0,
1
e
)
D、(-1,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x2-a,x≥0
2x+3,x<0

(1)若函數(shù)f(x)的圖象過點(1,-1),求f(f(0))的值;
(2)若方程f(x)=4有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩位同學下棋,若甲獲勝的概率為0.2,甲、乙下和棋的概率為0.5,則乙獲勝的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x+
m
x
(m為正的常數(shù)),它在(0,+∞)內的單調變化是:在(0,
m
]
內遞減,在[
m
,+∞)
內遞增.其第一象限內的圖象形如一個“對號”.請使用這一性質完成下面的問題.
(1)若函數(shù)g(x)=2x+
a
x
在(0,1]內為減函數(shù),求正數(shù)a的取值范圍;
(2)若圓C:x2+y2-2x-2y+1=0與直線l:y=kx相交于P、Q兩點,點M(0,b)且MP⊥MQ.求當b∈[1,+∞)時,k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,若f(x)=logx3,g(x)=log2x,輸入x=0.25,則輸出h(x)=( 。
A、0.25
B、2log32
C、-
1
2
log23
D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=loga(x+1),g(x)=loga(1-x)(a>0,a≠1)
(Ⅰ)求函數(shù)f(x)+g(x)的定義域并判斷其奇偶性;
(Ⅱ)求使f(x)+g(x)<0成立的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

公差為d,各項均為正整數(shù)的等差數(shù)列中,若a1=1,an=25,則n+d的最小值等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:拋物線x2=-y與直線y=mx+1有兩個不同交點;命題q:函數(shù)f(x)=
4
3
x3+2(m-2)x2+x-3在R上單調遞增;若p或q為真,p且q為假,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案