【題目】如圖,在四棱錐中,是平行四邊形,,, ,,,分別是,的中點(diǎn).
(Ⅰ)證明:平面平面;
(Ⅱ)求二面角的余弦值.
【答案】(1)見(jiàn)解析(2)
【解析】試題分析:
(Ⅰ)運(yùn)用幾何法和坐標(biāo)法兩種方法進(jìn)行證明可得結(jié)論.(Ⅱ)運(yùn)用幾何法和坐標(biāo)法兩種方法求解,利用坐標(biāo)法求解時(shí),在得到兩平面法向量夾角余弦值的基礎(chǔ)上,通過(guò)圖形判斷出二面角的大小,最后才能得到結(jié)論.
試題解析:
解法一:(Ⅰ)取中點(diǎn),連,
∵,
∴,
∵是平行四邊形,,,
∴,
∴是等邊三角形,
∴,
∵,
∴平面,
∴.
∵分別是的中點(diǎn),
∴∥,∥,
∴,,
∵,
∴平面,
∵平面,
∴平面平面.
(Ⅱ)由(Ⅰ)知,,
∴是二面角的平面角.
, ,,
在中,根據(jù)余弦定理得,
∴二面角的余弦值為.
解法二:(Ⅰ)∵是平行四邊形,,
,∴,
∴是等邊三角形,∵是的中點(diǎn),
∴,∵∥,
∴.
以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.
則,,,,,
設(shè),由,,
可得,,,
∴,
∵是的中點(diǎn),∴,
∵,
∴,
∵,,
∴平面,
∵平面,
∴平面平面.
(Ⅱ)由(Ⅰ)知,,.
設(shè)是平面的法向量,
由,得,
令,則.
又是平面的法向量,
∴,
由圖形知二面角為鈍角,
∴二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (,為自然對(duì)數(shù)的底數(shù)).
(1)若曲線在點(diǎn)處的切線垂直于軸,求實(shí)數(shù)的值;
(2)當(dāng)時(shí),求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程和直線的傾斜角;
(2)設(shè)點(diǎn),直線和曲線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若存在,使成立,求整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小店每天以每份5元的價(jià)格從食品廠購(gòu)進(jìn)若干份食品,然后以每份10元的價(jià)格出售.如果當(dāng)天賣(mài)不完,剩下的食品還可以每份1元的價(jià)格退回食品廠處理.
(Ⅰ)若小店一天購(gòu)進(jìn)16份,求當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天需求量(單位:份,)的函數(shù)解析式;
(Ⅱ)小店記錄了100天這種食品的日需求量(單位:份),整理得下表:
日需求量 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)小店一天購(gòu)進(jìn)16份這種食品,表示當(dāng)天的利潤(rùn)(單位:元),求的分布列及數(shù)學(xué)期望;
(ii)以小店當(dāng)天利潤(rùn)的期望值為決策依據(jù),你認(rèn)為一天應(yīng)購(gòu)進(jìn)食品16份還是17份?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù)),曲線.以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線、的極坐標(biāo)方程;
(2)射線與曲線、分別交于點(diǎn)(且均異于原點(diǎn))當(dāng)時(shí),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖四棱錐中, 平面,底面是梯形, , , , , , 為的中點(diǎn), 為上一點(diǎn),且().
(1)若時(shí),求證: 平面;
(2)若直線與平面所成角的正弦值為,求異面直線與直線所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)政府實(shí)施“互聯(lián)網(wǎng)+”戰(zhàn)略以來(lái),手機(jī)作為客戶(hù)端越來(lái)越為人們所青睞,通過(guò)手機(jī)實(shí)現(xiàn)衣食住行消費(fèi)已經(jīng)成為一種主要的消費(fèi)方式,“一機(jī)在手,走遍天下”的時(shí)代已經(jīng)到來(lái)。在某著名的夜市,隨機(jī)調(diào)查了100名顧客購(gòu)物時(shí)使用手機(jī)支付的情況,得到如下的列聯(lián)表,已知其中從使用手機(jī)支付的人群中隨機(jī)抽取1人,抽到青年的概率為.
(1)根據(jù)已知條件完成列聯(lián)表,并根據(jù)此資料判斷是否有的把握認(rèn)為“市場(chǎng)購(gòu)物用手機(jī)支付與年齡有關(guān)”?
(2)現(xiàn)采用分層抽樣從這100名顧客中按照“使用手機(jī)支付”和“不使用手機(jī)支付”中抽取得到一個(gè)容量為5的樣本,設(shè)事件為“從這個(gè)樣本中任選2人,這2人中至少有1人是不使用手機(jī)支付的”,求事件發(fā)生的概率?
列聯(lián)表
青年 | 中老年 | 合計(jì) | |
使用手機(jī)支付 | 60 | ||
不使用手機(jī)支付 | 24 | ||
合計(jì) | 100 |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓()的左、右焦點(diǎn)分別為,,過(guò)作垂直于軸的直線與橢圓在第一象限交于點(diǎn),若,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)在拋物線上,是否存在直線與橢圓交于,使得的中點(diǎn)落在直線上,并且與拋物線相切,若直線存在,求出的方程,若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com