(2013•黃埔區(qū)一模)若f(x)是R上的奇函數(shù),且f(x)在[0,+∞)上單調(diào)遞增,則下列結(jié)論:
①y=|f(x)|是偶函數(shù);
②對任意的x∈R都有f(-x)+|f(x)|=0;
③y=f(-x)在(-∞,0]上單調(diào)遞增;
④y=f(x)f(-x)在(-∞,0]上單調(diào)遞增.
其中正確結(jié)論的個數(shù)為( 。
分析:由f(x)是R上的奇函數(shù),且f(x)在[0,+∞)上單調(diào)遞增,知:y=|f(x)|是偶函數(shù);對任意的x∈R,不一定有f(-x)+|f(x)|=0;y=f(-x)在(-∞,0]上單調(diào)遞減;y=f(x)f(-x)=-[f(x)]2在(-∞,0]上單調(diào)遞減.
解答:解:∵f(x)是R上的奇函數(shù),且f(x)在[0,+∞)上單調(diào)遞增,
∴y=|f(x)|是偶函數(shù),故①正確;
對任意的x∈R,不一定有f(-x)+|f(x)|=0,故②不正確;
y=f(-x)在(-∞,0]上單調(diào)遞減,故③不正確;
y=f(x)f(-x)=-[f(x)]2在(-∞,0]上單調(diào)遞增,故④正確.
故選B.
點評:本題考查命題的真假判斷及其應(yīng)用,解題時要認真審題,仔細解答,注意等價轉(zhuǎn)化思想的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃埔區(qū)一模)給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,稱圓心在原點O、半徑是
a2+b2
的圓為橢圓C的“準圓”.已知橢圓C的一個焦點為F(
2
,0)
,其短軸的一個端點到點F的距離為
3

(1)求橢圓C和其“準圓”的方程;
(2)若點A是橢圓C的“準圓”與x軸正半軸的交點,B,D是橢圓C上的兩相異點,且BD⊥x軸,求
AB
AD
的取值范圍;
(3)在橢圓C的“準圓”上任取一點P,過點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,試判斷l(xiāng)1,l2是否垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃埔區(qū)一模)對于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“P數(shù)對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“類P數(shù)對”.設(shè)函數(shù)f(x)的定義域為R+,且f(1)=3.
(1)若(1,1)是f(x)的一個“P數(shù)對”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個“P數(shù)對”,且當(dāng)x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個“類P數(shù)對”,試比較下列各組中兩個式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃埔區(qū)一模)已知集合A={x|0<x<3},B={x|x2≥4},則A∩B=
{x|2≤x<3}
{x|2≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃埔區(qū)一模)已知tanα=
1
2
tan(β-α)=-
1
3
,則tan(β-2α)的值為
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃埔區(qū)一模)已知命題“若f(x)=m2x2,g(x)=mx2-2m,則集合{x|f(x)<g(x),
12
≤x≤1}=∅
”是假命題,則實數(shù)m的取值范圍是
(-7,0)
(-7,0)

查看答案和解析>>

同步練習(xí)冊答案