【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)在曲線上任取一點(diǎn),連接,在射線上取點(diǎn),使,點(diǎn)軌跡的極坐標(biāo)方程;

2)在曲線上任取一點(diǎn),在曲線上任取一點(diǎn),的最小值.

【答案】(1)(2)

【解析】

1)求出的極坐標(biāo)方程,設(shè)出點(diǎn)的極坐標(biāo),通過構(gòu)建出的等量關(guān)系,從而得出點(diǎn)軌跡的極坐標(biāo)方程;

2)先求出的普通方程,可以得到曲線是橢圓,然后轉(zhuǎn)化為參數(shù)方程,的最小值即為橢圓上的點(diǎn)到直線距離的最小值,利用點(diǎn)到直線的距離求解最值。

:1)因?yàn)榍的參數(shù)方程為為參數(shù))

所以化為普通方程為,

的極坐標(biāo)方程為,

設(shè),

,即

點(diǎn)軌跡的極坐標(biāo)方程為

2)因?yàn)榍的極坐標(biāo)方程為

所以化為直角坐標(biāo)方程為.

可化為參數(shù)方程為為參數(shù)),

的最小值為橢圓上的點(diǎn)到直線距離的最小值.

設(shè),則

,

。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,),數(shù)列滿足:,且).

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)求證:數(shù)列為等比數(shù)列;

(Ⅲ)求數(shù)列的前項(xiàng)和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)上單調(diào)遞減,求實(shí)數(shù)的取值范圍.

2)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一件剛出土的珍貴文物要在博物館大廳中央展出,需要設(shè)計(jì)各面是玻璃平面的無底正四棱柱將其罩住,罩內(nèi)充滿保護(hù)文物的無色氣體.已知文物近似于塔形,高1.8米,體積0.5立方米,其底部是直徑為0.9米的圓形,要求文物底部與玻璃罩底邊至少間隔0.3米,文物頂部與玻璃罩上底面至少間隔0.2米,氣體每立方米1000元,則氣體費(fèi)用最少為( )元

A.4500B.4000C.2880D.2380

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知頂點(diǎn)為原點(diǎn)的拋物線C的焦點(diǎn)與橢圓的上焦點(diǎn)重合,且過點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若拋物線上不同兩點(diǎn)AB作拋物線的切線,兩切線的斜率,若記AB的中點(diǎn)的橫坐標(biāo)為mAB的弦長,并求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,其中實(shí)數(shù).

(1)求的最大值;

(2)對(duì)于任意實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).其中.

1)討論函數(shù)的單調(diào)性;

2)函數(shù)處存在極值-1,且時(shí),恒成立,求實(shí)數(shù)的最大整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,平面,,,的中點(diǎn)為.

(Ⅰ)求證:;

(Ⅱ)求二面角的余弦值;

(Ⅲ)在棱上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(Ⅰ)求橢圓方程;

(Ⅱ)設(shè)為橢圓右頂點(diǎn),過橢圓的右焦點(diǎn)的直線與橢圓交于兩點(diǎn)(異于),直線,分別交直線,兩點(diǎn). 求證:兩點(diǎn)的縱坐標(biāo)之積為定值.

查看答案和解析>>

同步練習(xí)冊答案