在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為
x=2cosα
y=2+2sinα
(α為參數(shù)),M為C1上的動(dòng)點(diǎn),P點(diǎn)滿足
OP
=2
OM
,點(diǎn)P的軌跡為曲線C2.已知在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線θ=
π
3
與C1的異于極點(diǎn)的交點(diǎn)為A,與C2的異于極點(diǎn)的交點(diǎn)為B,
(1)求曲線C1與C2的直角坐標(biāo)方程;
(2)求線段AB的長(zhǎng).
考點(diǎn):參數(shù)方程化成普通方程
專題:選作題,坐標(biāo)系和參數(shù)方程
分析:(1)先設(shè)出點(diǎn)P的坐標(biāo),然后根據(jù)點(diǎn)P滿足的條件代入曲線C1的方程即可求出曲線C2的方程;
(2)根據(jù)(1)將求出曲線C1的極坐標(biāo)方程,分別求出射線θ=
π
3
與C1的交點(diǎn)A的極徑為ρ1,以及射線θ=
π
3
與C2的交點(diǎn)B的極徑為ρ2,最后根據(jù)|AB|=|ρ21|求出所求.
解答: 解:(1)設(shè)P(x,y),則由條件知道M(
x
2
,
y
2
),
由于M點(diǎn)在C1上,所以
x
2
=2cosα
y
2
=2+2sinα
即  
x=4cosα
y=4+4sinα

從而C2的參數(shù)方程為
x=4cosα
y=4+4sinα
(α為參數(shù)),
所以曲線C1與C2的直角坐標(biāo)方程分別為x2+(y-2)2=4,x2+(y-4)2=16;
(2)曲線C1的極坐標(biāo)方程為ρ=4sinθ;曲線C2的極坐標(biāo)方程為ρ=8sinθ.
射線θ=
π
3
與C1的交點(diǎn)A的極徑為ρ1=4sin
π
3
,
射線θ=
π
3
與C2的交點(diǎn)B的極徑為ρ2=8sin
π
3

所以|AB|=|ρ21|=2
3
點(diǎn)評(píng):本題考查點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,以及軌跡方程的求解和線段的度量,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線kx2-y2=1(k>0)的一條漸近線與直線2x+y-3=0垂直,則雙曲線的離心率是( 。
A、
5
2
B、
3
2
C、4
3
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正方體ABCD-A1B1C1D1中,E、F分別是A1D1、A1C1的中點(diǎn),則異面直線AE與CF所成的角的余弦值為( 。
A、
3
2
B、
3
30
10
C、
30
10
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2sin(ωx+φ)(ω>0)的圖象經(jīng)過(guò)A(-
π
6
,-2)、B(
π
4
,2)兩點(diǎn),則ω(  )
A、最大值為3
B、最小值為3
C、最大值為
12
5
D、最小值為
12
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某生產(chǎn)廠家的年利潤(rùn)y(單位:萬(wàn)元)與年產(chǎn)量x(單位:萬(wàn)件)的函數(shù)關(guān)系式為y=-
1
3
x3+49x-234
則使該生產(chǎn)廠家獲得最大年利潤(rùn)的年產(chǎn)量為( 。
A、13萬(wàn)件B、11萬(wàn)件
C、9萬(wàn)件D、7萬(wàn)件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于x的不等式:
x2+x-2
x3+7x2-8x
≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ln(ax+b)-x,其中a>0,b>0,
(1)若f(x)為[0,+∞)上的減函數(shù),求a,b應(yīng)滿足的關(guān)系;
(2)解不等式ln(1+
x-
1
x
)-
x-
1
x
≤ln2-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在三棱錐A-BCD中,平面ACB⊥平面BCD.在等腰直角三角形ABC中,AC=AB,AC=6,在Rt△BCD中,BC⊥BD,∠BCD=30°
(1)求證:平面ABD⊥平面ACD;
(2)求三棱錐C-ABD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

AB是⊙O的直徑,C為圓上一點(diǎn),AB=2,AC=1,P為⊙O所在平面外一點(diǎn),且PA⊥⊙O,PB與平面所成角為45°
(1)證明:BC⊥平面PAC;
(2)求點(diǎn)A到平面PBC的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案