如圖,設(shè)過點(diǎn)N(1,0)的動(dòng)直線l交橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)于A、B兩點(diǎn),且|AB|的最大值為4,橢圓C的離心率e=
3
2
,求橢圓C的方程.
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由題意求得2a,結(jié)合離心率及隱含條件求得b,則橢圓方程可求.
解答: 解:由題意可知,2a=4,∴a=2,
又e=
c
a
=
3
2
,∴c=
3

b2=a2-c2=22-(
3
)2=1

∴橢圓C的方程為
x2
4
+y2=1
點(diǎn)評:本題考查了橢圓方程的求法,考查了橢圓的簡單幾何性質(zhì),是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
,
b
滿足,
a
+
b
=(-
3
,3),
a
-
b
=(3
3
,-1),
c
=(m,3),
(1)求向量
a
,
b
的夾角θ值;
(2)當(dāng)(3
a
+
b
)∥
c
時(shí),m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3sin2x+2
3
sinxcosx+5cos2x.
(1)求函數(shù)f(x)的周期和增區(qū)間;
(2)已知f(α)=5,0<α<π,求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f為實(shí)系數(shù)三次多項(xiàng)式函數(shù)﹒已知五個(gè)方程式的相異實(shí)根個(gè)數(shù)如下表所述﹕
方程式相異實(shí)根的個(gè)數(shù)
f(x)-20=01
f(x)-10=03
f(x)=03
f(x)+10=01
f(x)+20=01
關(guān)于f的極小值a﹐試問下列哪一個(gè)選項(xiàng)是正確的( 。
A、-20<a<-10
B、-10<a<0
C、0<a<10
D、10<a<20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x2+bx+c,x≤0
3,x>0
,若f(-4)=f(0),f(-2)=-2,則函數(shù)y=f(x)-x的零點(diǎn)的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(2cosx,sinx),
n
=(cosx,2
3
cosx)(x∈R),設(shè)函數(shù)f(x)=
m
n
-1.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)已知銳角△ABC的三個(gè)內(nèi)角分別為A,B,C,若f(A)=2,B=
π
4
,邊AB=3,求邊BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,首項(xiàng)a1=2,公差為d(d≠0)且a1,a3,a11成等比數(shù)列.
(Ⅰ)求數(shù)列={an}的通項(xiàng)公式;
(Ⅱ)令bn=
an
2n
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-1,(x≤0)
f(x-2)+1,(x>0)
,把函數(shù)g(x)=f(x)-
1
2
x的偶數(shù)零點(diǎn)按從小到大的順序排列成一個(gè)數(shù)列,該數(shù)列的前n項(xiàng)的和Sn,則S2015=( 。
A、1007×2015
B、1008×2015
C、2014×2015
D、2015×2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某賓館安排A、B、C、D、E 五人入住3個(gè)房間,每個(gè)房間至少住1人,且A、B不能住同一房間,則共有
 
種不同的安排方法( 用數(shù)字作答).

查看答案和解析>>

同步練習(xí)冊答案