已知向量
p
在基底{
a
b
,
c
}下的坐標為(2,1,-1),則
p
在基底{
a
+
b
,
a
-
b
,
c
}下的坐標為
 
考點:空間向量的基本定理及其意義
專題:空間向量及應用
分析:設出向量
p
在基底{
a
+
b
,
a
-
b
,
c
}下的坐標為(x,y,z),把
p
用基底表示,利用向量相等,求出x、y、z的值即可.
解答: 解:設向量
p
在基底{
a
+
b
,
a
-
b
c
}下的坐標為(x,y,z),
p
=x(
a
+
b
)+y(
a
-
b
)+z
c
=(x+y)
a
+(x-y)
b
+z
c

又∵
p
=2
a
+
b
-
c
,
x+y=2
x-y=1
z=-1
,
解得x=
3
2
,y=
1
2
,z=-1;
p
在基底{
a
+
b
,
a
-
b
,
c
}下的坐標為(
3
2
,
1
2
,-1).
故答案為:(
3
2
,
1
2
,-1).
點評:本題考查了空間向量的基本定理以及坐標表示的應用問題,是基礎題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

平面內(nèi)有10個點,其中5個點在一條直線上,此外再沒有三點共線,則共可確定
 
個三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={x|y=lg(3-2x)},集合B={x|y=
1-x
},則A∩B=(  )
A、[1,
3
2
)
B、(-∞,1]
C、(-∞,
3
2
]
D、(
3
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-
2
2x+1
,g(x)=
1
f(x)-a

(1)若函數(shù)f(x)為奇函數(shù),求a的值;
(2)若關于x的方程g(2x)-a•g(x)=0有唯一的實數(shù)解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=Asin(ωx+
π
4
)(其中A>0,ω>0)的振幅為2,周期為π.
(1)求f(x)的解析式并寫出f(x)的單調(diào)增區(qū)間;
(2)將f(x)的圖象先左移
π
4
個單位,再將每個點的縱坐標不變,橫坐標變?yōu)樵瓉淼?倍,得到g(x)的圖象,求g(x)解析式和對稱中心(m,0),m∈[0,π].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若△ABC中,C=30°,a+b=1,則△ABC面積S的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

sin(-
π
3
)的值是( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在長方形ABCD中,已知AB=4,BC=2,O為AB的中點,在長方形ABCD內(nèi)隨機取一點,取到的點到O的距離小于2的概率為( 。
A、
π
8
B、
π
4
C、1-
π
8
D、1-
π
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知下列五個命題:
①命題“?x∈R使得x2+x+1<0”的否定是:“?x∈R均有x2+x+1>0”
②若兩組數(shù)據(jù)的中位數(shù)相等,則它們的平均數(shù)也相等
③已知x>0時,(x-1)f′(x)<0,若△ABC是銳角三角形,則f(sinA)>f(cosB)
④“在三角形ABC中,若sinA>sinB,則A>B”的否命題是真命題
⑤過M(2,0)的直線l與橢圓
x2
2
+y2
=1交于P1,P2兩點,線段P1P2中點為P,設直線l的斜率為k1(k1≠0),直線OP的斜率為k2,則k1k2等于-
1
2

其中真命題的序號是
 

查看答案和解析>>

同步練習冊答案