【題目】已知的反函數(shù),定義:若對(duì)于給定實(shí)數(shù),函數(shù))互成反函數(shù),則稱滿足和性質(zhì),若函數(shù)互為反函數(shù),則稱滿足積性質(zhì)

1)判斷函數(shù)是否滿足“1和性質(zhì),并說(shuō)明理由;

2)求所有滿足“2和性質(zhì)的一次函數(shù).

【答案】1)不滿足,證明見詳解;(2

【解析】

1)先求出的解析式,換元可得的解析式,將此解析式與的解析式作對(duì)比,看是否滿足互為反函數(shù).

2)先求出的解析式,再求出的解析式,再由的解析式求出,用兩種方法得到的的解析式應(yīng)該相同,解方程求得滿足條件的一次函數(shù)的解析式.

1)函數(shù)的反函數(shù)是,

,其反函數(shù)為,

故函數(shù)不滿足“1和性質(zhì).

2)設(shè)函數(shù)滿足“2和性質(zhì),

,,

,得反函數(shù),

“2和性質(zhì)定義可知,對(duì)恒成立.

,即所求的一次函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng),函數(shù)在區(qū)間上為增函數(shù),求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知分別是離心率為的橢圓的左、右焦點(diǎn),點(diǎn)是橢圓上異于其左、右頂點(diǎn)的任意一點(diǎn),過(guò)右焦點(diǎn)的外角平分線的垂線,交于點(diǎn),且為坐標(biāo)原點(diǎn)).

(1)求橢圓的方程;

(2)若點(diǎn)在圓上,且在第一象限,過(guò)作圓的切線交橢圓于、兩點(diǎn),問(wèn):的周長(zhǎng)是否為定值?如果是,求出該定值;如果不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x2-(a-1)x-a<0,a∈R},集合B={x|<0}.

(1)當(dāng)a=3時(shí),求A∩B;

(2)若A∪B=R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年,隨著中國(guó)第一款5G手機(jī)投入市場(chǎng),5G技術(shù)已經(jīng)進(jìn)入高速發(fā)展階段.已知某5G手機(jī)生產(chǎn)廠家通過(guò)數(shù)據(jù)分析,得到如下規(guī)律:每生產(chǎn)手機(jī)萬(wàn)臺(tái),其總成本為,其中固定成本為800萬(wàn)元,并且每生產(chǎn)1萬(wàn)臺(tái)的生產(chǎn)成本為1000萬(wàn)元(總成本=固定成本+生產(chǎn)成本),銷售收入萬(wàn)元滿足

1)將利潤(rùn)表示為產(chǎn)量萬(wàn)臺(tái)的函數(shù);

2)當(dāng)產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)曲線在點(diǎn)處的切線垂直于直線,求的值;

(2)若函數(shù)有兩個(gè)不同的零點(diǎn),求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是

(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知點(diǎn).若點(diǎn)的極坐標(biāo)為,直線經(jīng)過(guò)點(diǎn)且與曲線相交于,兩點(diǎn),求,兩點(diǎn)間的距離的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)x R , e 為自然對(duì)數(shù)的底數(shù)).

判斷函數(shù) f x 的單調(diào)性與奇偶性;

⑵是否存在實(shí)數(shù) t ,使不等式對(duì)一切的 x R 都成立?若存在,求出 t 的值, 不存在說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市經(jīng)營(yíng)一批產(chǎn)品,在市場(chǎng)銷售中發(fā)現(xiàn)此產(chǎn)品在30天內(nèi)的日銷售量P(件)與日期)之間滿足,已知第5日的銷售量為55件,第10日的銷售量為50件。

(1)求第20日的銷售量; (2)若銷售單價(jià)Q(元/件)與的關(guān)系式為,求日銷售額的最大值。

查看答案和解析>>

同步練習(xí)冊(cè)答案