已知在正項數(shù)列{an}中,Sn表示前n項和且2
Sn
=an+1,數(shù)列{bn}滿足bn=
1
4Sn-1
為數(shù)列{bn}}的前n項和,
(Ⅰ) 求an,Sn;
(Ⅱ)是否存在最大的整數(shù)t,使得對任意的正整數(shù)n均有Tn
t
36
總成立?若存在,求出t;若不存在,請說明理由.
考點:數(shù)列與不等式的綜合
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由2
Sn
=an+1,得Sn=(
an+1
2
2,從而數(shù)列{an}是首項為1,公差為2的等差數(shù)列,由此能求出an,Sn
(Ⅱ)由(Ⅰ)知bn=
1
4n2-1
=
1
2
(
1
2n-1
-
1
2n+1
)
,Tn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)]
=
n
2n+1
,由此能求出t=11符合題意.
解答: 解:(Ⅰ)由2
Sn
=an+1,
得Sn=(
an+1
2
2,
當(dāng)n=1時,a1=S1=(
a1+1
2
)2
,
解得a1=1,
當(dāng)n≥2時,an=Sn-Sn-1=(
an+1
2
2-(
an-1+1
2
2,
整理,得(an+an-1)(an-an-1-2)=0,
∵數(shù)列{an}各項為正,∴an+an-1>0,
∴an-an-1-2=0,
∴數(shù)列{an}是首項為1,公差為2的等差數(shù)列,
∴an=a1+(n-1)×2=2n-1,
∴Sn=
n(a1+an)
2
=
n[1+(2n-1)]
2
=n2
(Ⅱ)由(Ⅰ)知bn=
1
4n2-1
=
1
2
(
1
2n-1
-
1
2n+1
)
,
Tn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)]
=
n
2n+1
,
∴數(shù)列{Tn}是增數(shù)列,
∴T1是遞增數(shù)列,故T1=
1
3
是最小值,
只需
1
3
t
36
,即t<12.
∴存在t=11符合題意.
點評:本題考查數(shù)列的通項公式和前n項和公式的合理運用,解題時要認(rèn)真審題,注意裂項求和法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以棱長為1的正方體的各個面的中心為頂點的幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合E={x||x-1|≥m},F(xiàn)={x|
10
x+6
>1}.
(1)若m=3,求E∩F;
(2)若E∪F=R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“若兩三角形全等則它們相似”的逆否命題為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若變量x,y滿足約束條件
4x+3y-25≤0
x-4y+8≤0
x-1≥0
則Z=2x-y的最大值為(  )
A、2B、5C、1D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+alnx
(Ⅰ)當(dāng)a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)求f(x)的單調(diào)區(qū)間及極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一水池有2個進(jìn)水口,1個出水口,每個進(jìn)水口進(jìn)水速度如圖甲,出水口出水速度如圖乙所示.某天0點到6點,該水池的蓄水量如圖丙所示.

給出以下3個論斷:①0點到3點只進(jìn)水不出水;②3點到4點所打開一個進(jìn)水口和一個出水口;③4點到6點不進(jìn)水不出水.則正確論斷的個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2
1
1
xlna
dx=-1則實數(shù)a的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間(0,L)內(nèi)任取兩點,則兩點之間的距離小于
L
3
的概率為(  )
A、
1
3
B、
2
3
C、
4
9
D、
5
9

查看答案和解析>>

同步練習(xí)冊答案