A. | 1 | B. | 3 | C. | $\frac{{5\sqrt{7}}}{7}$ | D. | $\frac{{15\sqrt{7}}}{7}$ |
分析 先求出A坐標(biāo),再由點(diǎn)到直線的距離公式能求出結(jié)果.
解答 解:聯(lián)立$\left\{\begin{array}{l}{3x+2y+1=0}\\{x-2y-5=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$,∴A(1,-2),
∴點(diǎn)A到直線${l_0}:y=-\frac{3}{4}x-\frac{5}{2}$的距離為d=$\frac{|\frac{3}{4}×1-2+\frac{5}{2}|}{\sqrt{\frac{9}{16}+1}}$=1.
故選:A.
點(diǎn)評 本題考查點(diǎn)到直線的距離的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意點(diǎn)到直線的距離公式的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1)n$\frac{1}{n}$ | B. | (-1)n+1$\frac{1}{n}$ | C. | (-1)n$\frac{1}{n+1}$ | D. | (-1)n+1$\frac{1}{n-1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f(x)的最小正周期為π | B. | 函數(shù)f(x)圖象關(guān)于點(diǎn)$(\frac{5π}{12},0)$對稱 | ||
C. | 函數(shù)f(x)在區(qū)間$[0,\frac{π}{2}]$上是減函數(shù) | D. | 函數(shù)f(x)的圖象關(guān)于直線$x=\frac{π}{6}$對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({-1,-\frac{1}{2018}})$ | B. | $({0,\frac{1}{-2017}})$ | C. | $({1,\frac{1}{-2016}})$ | D. | $({2,\frac{1}{-2015}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{4}$ | B. | $\frac{5}{3}$ | C. | $\frac{{\sqrt{7}}}{4}$ | D. | $\frac{25}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com