【題目】已知拋物線C:y2=2px(p>0)的焦點為F,點M(x0 , 2 )(x0 )是拋物線C上一點.圓M與線段MF相交于點A,且被直線x= 截得的弦長為 |MA|.若 =2,則|AF|等于( )
A.
B.1
C.2
D.3

【答案】B
【解析】解:由題意:M(x0 , 2 )在拋物線上,則8=2px0 , 則px0=4,①
由拋物線的性質(zhì)可知,丨DM丨=x0 ,
=2,則丨MA丨=2丨AF丨= 丨MF丨= (x0+ ),
∵被直線x= 截得的弦長為 |MA|,則丨DE丨= 丨MA丨= (x0+ ),
由丨MA丨=丨ME丨=r,
在Rt△MDE中,丨DE丨2+丨DM丨2=丨ME丨2 , 即 (x0+ 2+(x02= (x0+ 2 ,
代入整理得:4x02+p2=20 ②,
由①②,解得:x0=2,p=2,
∴丨AF丨= (x0+ )=1,
故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+ )+cos(2x+ )+sin2x
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,若f( )= ,a=2,b= ,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高級中學(xué)共有900名學(xué)生,現(xiàn)用分層抽樣的方法從該校學(xué) 生中抽取1個容量為45的樣本,其中高一年級抽20人,高三年級抽10人,則該校高二年級學(xué)生人數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)F1、F2是雙曲線 =1(a>0,b>0)的左、右焦點,P是雙曲線右支上一點,滿足( + =0(O為坐標原點),且3| |=4| |,則雙曲線的離心率為(
A.2
B.
C.
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三角形ABC中,B(﹣1,0),C(1,0),且|AB|+|AC|=4.
(Ⅰ)求動點A的軌跡M的方程;
(Ⅱ)P為軌跡M上動點,△PBC的內(nèi)切圓面積為S1 , 外接圓面積為S2 , 當P在M上運動時,求 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用如圖所示的幾何體中,四邊形BB1C1C是矩形,BB1⊥平面ABC,A1B1∥AB,AB=2A1B1 , E是AC的中點.
(1)求證:A1E∥平面BB1C1C;
(2)若AC=BC,AB=2BB1 , 求二面角A﹣BA1﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù) 向右平移 個單位后得到y(tǒng)=g(x)的圖象,若函數(shù)y=g(x)在區(qū)間[a,b](b>a)上的值域是 ,則b﹣a的最小值m和最大值M分別為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系xoy中,直線l的參數(shù)方程為 (t 為參數(shù)),以原點O為極點,x軸正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=asinθ.
(Ⅰ)若a=2,求圓C的直角坐標方程與直線l的普通方程;
(Ⅱ)設(shè)直線l截圓C的弦長等于圓C的半徑長的 倍,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且a>b,a>c.△ABC的外接圓半徑為1, ,若邊BC上一點D滿足BD=2DC,且∠BAD=90°,則△ABC的面積為

查看答案和解析>>

同步練習(xí)冊答案