【題目】設(shè)函數(shù)f(x)=x2-23x+60,g(x)=f(x)+|f(x)|,則g(1)+g(2)+g(3)+g(4)+g(5)+g(6)的值為________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的奇函數(shù)f(x)滿足當(dāng)x≥0時(shí),f(x)=1og2(x+2)+x+b,則|f(x)|>3的解集為( )
A.(﹣∞,﹣2)∪(2,+∞)
B.(﹣∞,﹣,4)∪(4,+∞)
C.(﹣2,2)
D.(﹣4,4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明和爸爸媽媽一家三口在春節(jié)期間玩搶紅包游戲,爸爸發(fā)了12個(gè)紅包,紅包金額依次為1元、2元、3元、…、12元,每次發(fā)一個(gè),三人同時(shí)搶,最后每人搶到了4個(gè)紅包,爸爸說:我搶到了1元和3元;媽媽說:我搶到了8元和9元;小明說:我們?nèi)烁鲹尩降慕痤~之和相等,據(jù)此可判斷小明必定搶到的兩個(gè)紅包金額分別是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若a∈R,則“a=1”是“|a|=1”的( )
A.充分而不必要條件 B.必要而不充分條件
C.充要條件 D.既不充分又不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)結(jié)論:
①若x>0,則x>sinx恒成立;
②命題“若x﹣sinx=0,則x=0”的逆否命題為“若x≠0,則x﹣sinx≠0”;
③“命題p∧q為真”是“命題p∨q為真”的充分不必要條件;
④命題“x∈R,x﹣lnx>0”的否定是“x0∈R,x0﹣lnx0<0”.
其中正確結(jié)論的個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家具的標(biāo)價(jià)為132元,若降價(jià)以九折出售(即優(yōu)惠10%),仍可獲利10%(相對(duì)進(jìn)貨價(jià)),則該家具的進(jìn)貨價(jià)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三角形兩條邊長分別為3 cm,5 cm,其夾角的余弦是方程5x2-7x-6=0的根,則此三角形的面積是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用反證法證明命題“若a,b∈N,ab能被3整除,那么a,b中至少有一個(gè)能被3整除”時(shí),假設(shè)應(yīng)為( )
A.a,b都能被3整除 B.a,b都不能被3整除
C.b不能被3整除 D.a不能被3整除
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com