10.已知點(diǎn)F是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn),點(diǎn)E是該雙曲線的右焦點(diǎn),過點(diǎn)F且垂直于x軸的直線與雙曲線相交于A,B兩點(diǎn),若$\overrightarrow{EA}$•$\overrightarrow{EB}$>0,則該雙曲線的離心率e的取值范圍是(  )
A.($\sqrt{2}$,+∞)B.(1,$\sqrt{2}$+1)C.(2,+∞)D.(1,2)

分析 要使$\overrightarrow{EA}•\overrightarrow{EB}>0$,只需滿足∠AEB為銳角,只需滿足∠AEF<45°,即|AF|<|EF|,將此式轉(zhuǎn)化為關(guān)于a、c的不等式,化簡整理即可得到該雙曲線的離心率e的取值范圍.

解答 解:要使$\overrightarrow{EA}•\overrightarrow{EB}>0$,只需滿足∠AEB為銳角,只需滿足∠AEF<45°.
在△AEF中,$tan∠AEF=\frac{{|{AE}|}}{{|{EF}|}}=\frac{{\frac{b^2}{a}}}{a+c}<1$,即c2-ac-2a2<0,兩邊同除以a2,e2-e-2<0,
又e>1,
所以離心率e的取值范圍是(1,2).
故選:D.

點(diǎn)評 本題考查雙曲線離心率的范圍,著重考查了雙曲線的標(biāo)準(zhǔn)方程與簡單幾何性質(zhì)等知識,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.一天中對某人的心跳檢測了8次,得到如表所示的數(shù)據(jù)
檢測次數(shù)12345678
檢測數(shù)據(jù)a(次/分鐘)5960626263656667
上述數(shù)據(jù)的統(tǒng)計(jì)分析中,一部分計(jì)算見如圖所示的程序框圖(其中$\overline{a}$是這8個(gè)數(shù)的平均數(shù)),則輸出的值是( 。
A.$\sqrt{7}$B.7C.8D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)函數(shù)f(x)的定義域?yàn)镽,若存在常數(shù)m>0,使|f(x)|≤m|x|對一切實(shí)數(shù)x均成立,則稱f(x)為“倍約束函數(shù)”.現(xiàn)給出下列函數(shù):①f(x)=0;②f(x)=x2;③f(x)=$\frac{x}{{x}^{2}+x+1}$;④f(x)是定義在實(shí)數(shù)集R上的奇函數(shù),且對一切x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.其中是“倍約束函數(shù)”的序號是(  )
A.①②④B.③④C.①④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知b<a<0,且a,b,2三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,一條光線從點(diǎn)(a,b)射出,經(jīng)y軸反射與圓(x+4)2+(y-1)2=1相切,則反射光線所在的直線的斜率為( 。
A.-$\frac{5}{3}$或-$\frac{3}{5}$B.-$\frac{3}{2}$或-$\frac{2}{3}$C.-$\frac{5}{4}$或-$\frac{4}{5}$D.-$\frac{4}{3}$或-$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.當(dāng)x>0時(shí),函數(shù)$f(x)=x+\frac{1}{x}$的最小值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},則(  )
A.M∩N={ 4,6 }B.M∪N=UC.(∁UN )∪M=UD.(∁UM)∩N=N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知復(fù)數(shù)$z=\frac{1+ai}{1-i}(a∈R)$,若z為純虛數(shù),則a的值為(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在矩形ABCD中,已知AB=2,AD=4,點(diǎn)E、F分別在AD、BC上,且AE=1,BF=3,將四邊形AEFB沿EF折起,使點(diǎn)B在平面CDEF上的射影H在直線DE上.
(1)求證:CD⊥BE;
(2)求線段BH的長度;
(3)求直線AF與平面EFCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=log2x+1的定義域?yàn)椋ā 。?table class="qanwser">A.(0,+∞)B.[0,+∞)C.(-1,+∞)D.[-1,+∞)

查看答案和解析>>

同步練習(xí)冊答案