【題目】設(shè)橢圓的左焦點(diǎn)為,過的直線交于,兩點(diǎn),點(diǎn)的坐標(biāo)為.

1)若點(diǎn)也是頂點(diǎn)為原點(diǎn)的拋物線的焦點(diǎn),求拋物線的方程;

2)當(dāng)軸垂直時(shí),求直線的方程;

3)設(shè)為坐標(biāo)原點(diǎn),證明:.

【答案】(1);(2);(3)證明見解析.

【解析】

(1)由拋物線的焦點(diǎn)為即可求得方程.
(2)求得的方程再代入橢圓計(jì)算坐標(biāo)即可.
(3)分支線斜率為0,斜率不存在與一般斜率三種情況進(jìn)行討論.又由可轉(zhuǎn)證,聯(lián)立方程代入韋達(dá)定理化簡(jiǎn)即可.

(1)由題設(shè)拋物線,且焦點(diǎn)為,故拋物線方程.

(2)由已知得,的方程為.代入橢圓方程可得,點(diǎn)的坐標(biāo)為.所以的方程為.

(3)當(dāng)軸重合時(shí),.

當(dāng)軸垂直時(shí),的垂直平分線,所以.

當(dāng)軸不重合也不垂直時(shí),設(shè)的方程為,,,則,,直線,的斜率之和為.

,.

代入.所以,,.

.

從而,故,的傾斜角互補(bǔ),所以.

綜上,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性并指出相應(yīng)單調(diào)區(qū)間;

2)若,設(shè)是函數(shù)的兩個(gè)極值點(diǎn),若,且恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)若上恒成立,求實(shí)數(shù)的取值范圍;

(2)證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)報(bào)道,全國(guó)很多省市將英語(yǔ)考試作為高考改革的重點(diǎn),一時(shí)間英語(yǔ)考試該如何改革引起廣泛關(guān)注,為了解某地區(qū)學(xué)生和包括老師、家長(zhǎng)在內(nèi)的社會(huì)人士對(duì)高考英語(yǔ)改革的看法,某媒體在該地區(qū)選擇了3600人進(jìn)行調(diào)查,就是否取消英語(yǔ)聽力問題進(jìn)行了問卷調(diào)查統(tǒng)計(jì),結(jié)果如下表:

態(tài)度

調(diào)查人群

應(yīng)該取消

應(yīng)該保留

無(wú)所謂

在校學(xué)生

2100

120

社會(huì)人士

600

(1)已知在全體樣本中隨機(jī)抽取人,抽到持應(yīng)該保留態(tài)度的人的概率為,現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取人進(jìn)行問卷訪談,問應(yīng)在持無(wú)所謂態(tài)度的人中抽取多少人?

(2)在持應(yīng)該保留態(tài)度的人中,用分層抽樣的方法抽取人,再平均分成兩組進(jìn)行深入交流,求第一組中在校學(xué)生人數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某群體的人均通勤時(shí)間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時(shí).某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當(dāng))的成員自駕時(shí),自駕群體的人均通勤時(shí)間為(單位:分鐘),而公交群體的人均通勤時(shí)間不受影響,恒為分鐘,試根據(jù)上述分析結(jié)果回答下列問題:

(1)當(dāng)在什么范圍內(nèi)時(shí),公交群體的人均通勤時(shí)間少于自駕群體的人均通勤時(shí)間?

(2)求該地上班族的人均通勤時(shí)間的表達(dá)式;討論的單調(diào)性,并說明其實(shí)際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)[0,7]上有16兩個(gè)零點(diǎn),且函數(shù)與函數(shù)都是偶函數(shù),則[02019]上的零點(diǎn)至少有( )個(gè)

A.404B.406C.808D.812

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩動(dòng)圓),把它們的公共點(diǎn)的軌跡記為曲線,若曲線軸的正半軸的交點(diǎn)為,且曲線上的相異兩點(diǎn)滿足:.

1)求曲線的軌跡方程;

2)證明直線恒經(jīng)過一定點(diǎn),并求此定點(diǎn)的坐標(biāo);

3)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個(gè)零點(diǎn) ,則下面說法正確的是( )

A. B. C. D. 有極小值點(diǎn),且

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線有如下光學(xué)性質(zhì):由其焦點(diǎn)射出的光線經(jīng)拋物線反射后,沿平行于拋物線對(duì)稱軸的方向射出.現(xiàn)有拋物線,如圖一平行于軸的光線射向拋物線,經(jīng)兩次反射后沿平行軸方向射出,若兩平行光線間的最小距離為4,則該拋物線的方程為__________

查看答案和解析>>

同步練習(xí)冊(cè)答案