函數(shù)的定義域為F,函數(shù)g(x)=lg(x-1)+lg(x-2)的定義域為G,那么有

[  ]

A.
B.F=G
C.
D.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為[-3,+∞),部分函數(shù)值如表所示,其導函數(shù)的圖象如圖所示,若正數(shù)a,b滿足f(2a+b)<1,則
b+2
a+2
的取值范圍是(  )
精英家教網(wǎng)
A、(
2
5
,1)
B、(
2
5
,4)
C、(1,4)
D、(-∞,
2
5
)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)的定義域為R,若存在與x無關(guān)的正常數(shù)M,使|f(x)|≤M|x|對一切實數(shù)x均成立,則稱f(x)為“有界泛函”,給出以下函數(shù):(1)f(x)=x2;(2)f(x)=2x;(3)f(x)=
x
x2+x+1
;(4)f(x)=xsinx.其中是“有界泛函”的個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)的定義域為R,若存在與x無關(guān)的正常數(shù)M,使|f(x)|≤M|x|對一切實數(shù)x恒成立,則稱f(x)為有界泛函.有下面四個函數(shù):
①f(x)=1;   
②f(x)=x2;   
③f(x)=2xsinx;   
f(x)=
x
x2+x+2

其中屬于有界泛函的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=[x]的函數(shù)值表示不超過x的最大整數(shù),例如:[-3.5]=-4,[2.7]=2
(1)如果實數(shù)a滿足[2a+3]=3,且[3a-1]=-1,求實數(shù)a的取值范圍;
(2)如果函數(shù)g(x)=x-f(x),它的定義域為(-1,3)
①求g(-0.4)和g(2.2)的值;
②試用分段函數(shù)的形式寫出函數(shù)g(x)的解析式,并作出函數(shù)g(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•遂寧二模)設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù),使得對于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),則稱f(x)為M上的l高調(diào)函數(shù),現(xiàn)給出下列命題:
①函數(shù)f(x)=(
12
)x
為R上的1高調(diào)函數(shù);
②函數(shù)f (x)=sin 2x為R上的高調(diào)函數(shù);
③如果定義域是[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實數(shù)m的取值范圍是[2,+∞);
④如果定義域為R的函教f (x)是奇函數(shù),當x≥0時,f(x)=|x-a2|-a2,且f(x)為R上的4高調(diào)函數(shù),那么實數(shù)a的取值范圍是[一1,1].
其中正確的命題是
②③④
②③④
 (寫出所有正確命題的序號).

查看答案和解析>>

同步練習冊答案