(1)選修4-4:坐標(biāo)系與參數(shù)方程
在曲線C1
x=1+cosθ
y=sinθ
(θ為參數(shù))上求一點(diǎn),使它到直線
C2
x=-2
2
+
1
2
t
y=1-
1
2
t
(t參數(shù))

的距離最小,并求出該點(diǎn)坐標(biāo)和最小距離.
(2)選修4-5;不等式選講
若ab>0,且A(a,0),B(0,b),C(-2,-2)三點(diǎn)共線,求ab的最小值.
分析:(1)把直線C2化成普通方程,求出P(1+cosθ,sinθ)到直線C2的距離,利用正弦函數(shù)取的最大值的條件,求出
θ,即得點(diǎn)P的坐標(biāo).
(2) 由三點(diǎn)共線可得
2
a+2
=
b+2
2
,ab=-2(a+b),利用基本不等式求出ab的最小值.
解答:解:(1)直線C2化成普通方程是x+y+2
2
-1=0

設(shè)所求的點(diǎn)為P(1+cosθ,sinθ),則P到直線C2的距離d=
|1+cosθ+sinθ+2
2
-1|
2
=|sin(θ+
π
4
)+2|

當(dāng)θ+
π
4
=
2
+2kπ,k∈Z
時(shí),即θ=
4
+2kπ,k∈Z
時(shí),d取最小值1,
此時(shí),點(diǎn)P的坐標(biāo)是(1-
2
2
,-
2
2
)

(2)解:根據(jù)題意,
2
a+2
=
b+2
2
,即ab=-2(a+b),
∵ab>0,∴a<0,b<0,∴(-a)+(-b)≥2
(-a)(-b),

ab≥4
ab
,∴
ab
≥4
ab
≤0
,∴ab≤16,當(dāng)且僅當(dāng)a=b-4時(shí)等號(hào)成立,∴(ab)min=16
點(diǎn)評(píng):本題考查點(diǎn)到直線的距離公式的應(yīng)用,三點(diǎn)共線的性質(zhì),基本不等式的應(yīng)用,基本不等式的應(yīng)用是易錯(cuò)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

本題共有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則以所做的前2題計(jì)分.
(1)選修4-2:矩陣與變換
已知二階矩陣M有特征值λ=3及對(duì)應(yīng)的一個(gè)特征向量e1=
1
1
,并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(-1,2)變換成(9,15).求矩陣M.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程是
x=2+2sinα
y=2cosα
(α是參數(shù)).
現(xiàn)以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,寫出曲線C的極坐標(biāo)方程.
(3)選修4-5:不等式選講
解不等式|2x+1|-|x-4|>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)A.選修4-1:幾何證明選講
如圖,圓O1與圓O2內(nèi)切于點(diǎn)A,其半徑分別為r1與r2(r1>r2 ).圓O1的弦AB交圓O2于點(diǎn)C ( O1不在AB上).求證:AB:AC為定值.
B.選修4-2:矩陣與變換
已知矩陣A=
11
21
,向量β=
1
2
.求向量
α
,使得A2
α
=
β

C.選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,求過橢圓
x=5cosφ
y=3sinφ
(φ為參數(shù))的右焦點(diǎn),且與直線
x=4-2t
y=3-t
(t為參數(shù))平行的直線的普通方程.
D.選修4-5:不等式選講(本小題滿分10分)
解不等式:x+|2x-1|<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程
以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系.且兩個(gè)坐標(biāo)系取相等的單位長(zhǎng)度.已知直線l經(jīng)過點(diǎn)P(1,1),傾斜角α=
π6
;圓的極坐標(biāo)方程ρ=2cosθ+6sinθ
(1)寫出直線l的參數(shù)方程;將圓的極坐標(biāo)方程化成直角坐標(biāo)方程;
(2)設(shè)l與圓相交于A、B兩點(diǎn),求弦AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題設(shè)有(1)、(2)、(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿分14分
(1)選修4-2:矩陣與變換
變換T是將平面上每個(gè)點(diǎn)M(x,y)的橫坐標(biāo)乘2,縱坐標(biāo)乘4,變到點(diǎn)M′(2x,4y).
(Ⅰ)求變換T的矩陣;
(Ⅱ)圓C:x2+y2=1在變換T的作用下變成了什么圖形?
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知極點(diǎn)與原點(diǎn)重合,極軸與x軸的正半軸重合.若曲線C1的極坐標(biāo)方程為:5ρ2-3ρ2cos2θ-8=0,直線?的參數(shù)方程為:
x=1-
3
t
y=t
(t為參數(shù)).
(Ⅰ)求曲線C1的直角坐標(biāo)方程;
(Ⅱ)直線?上有一定點(diǎn)P(1,0),曲線C1與?交于M,N兩點(diǎn),求|PM|.|PN|的值.
(3)選修4-5:不等式選講
已知a,b,c為實(shí)數(shù),且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2
+m-1=0.
(Ⅰ)求證:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14

(Ⅱ)求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泉州模擬)(1)選修4-2:矩陣與變換
若二階矩陣M滿足M
12
34
=
710
46

(Ⅰ)求二階矩陣M;
(Ⅱ)把矩陣M所對(duì)應(yīng)的變換作用在曲線3x2+8xy+6y2=1上,求所得曲線的方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
x=2tcosθ
y=2sinθ
(t為非零常數(shù),θ為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,直線l的方程為ρsin(θ-
π
4
)=2
2

(Ⅰ)求曲線C的普通方程并說明曲線的形狀;
(Ⅱ)是否存在實(shí)數(shù)t,使得直線l與曲線C有兩個(gè)不同的公共點(diǎn)A、B,且
OA
OB
=10
(其中O為坐標(biāo)原點(diǎn))?若存在,請(qǐng)求出;否則,請(qǐng)說明理由.
(3)選修4-5:不等式選講
已知函數(shù)f(x)=|x-2|+|x-4|的最小值為m,實(shí)數(shù)a,b,c,n,p,q滿足a2+b2+c2=n2+p2+q2=m.
(Ⅰ)求m的值;
(Ⅱ)求證:
n4
a2
+
p4
b2
+
q4
c2
≥2

查看答案和解析>>

同步練習(xí)冊(cè)答案