已知數(shù)列{an}中,a2=1,前n項和為Sn,且.
(1)求a1,a3;
(2)求證:數(shù)列{an}為等差數(shù)列,并寫出其通項公式;
(3)設(shè),試問是否存在正整數(shù)p,q(其中1<p<q),使b1,bp,bq成等比數(shù)列?若存在,求出所有滿足條件的數(shù)組(p,q);若不存在,說明理由.
(1) a1=S1=="0," a3=2
(2) an=n-1
(3) 存在唯一正整數(shù)數(shù) 對(p,q)=(2,3),使b1,bp,bq成等比數(shù)列
解析試題分析:解:(1)令n=1,則a1=S1==0. 2分; a3=2; 3分
(2)由,即, ① 得 . ②
②-①,得 . ③ 5分
于是,. ④
③+④,得,即. 7分
又a1=0,a2=1,a2-a1=1,
所以,數(shù)列{an}是以0為首項,1為公差的等差數(shù)列.
所以,an=n-1. 9分
法二②-①,得 . ③ 5分
于是, 7分
所以,an=n-1. 9分
(3)假設(shè)存在正整數(shù)數(shù)組(p,q),使b1,bp,bq成等比數(shù)列,
則lgb1,lgbp,lgbq成等差數(shù)列, 10分
于是,. 11分
所以,(☆).易知(p,q)=(2,3)為方程(☆)的一組解. 12分
當(dāng)p≥3,且p∈N*時,<0,
故數(shù)列{}(p≥3)為遞減數(shù)列 14分
于是≤<0,所以此時方程(☆)無正整數(shù)解. 15分
綜上,存在唯一正整數(shù)數(shù) 對(p,q)=(2,3),使b1,bp,bq成等比數(shù)列. 16分
考點:等差數(shù)列和等比數(shù)列
點評:解決的關(guān)鍵是根據(jù)等差數(shù)列和等比數(shù)列的性質(zhì)以及定義來求解運用。屬于基礎(chǔ)題。
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列是等比數(shù)列,,公比是的展開式中的第二項(按x的降冪排列).
(1)用表示通項與前n項和;
(2)若,用表示.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
下圖是一個按照某種規(guī)律排列出來的三角形數(shù)陣
假設(shè)第行的第二個數(shù)為
(1)依次寫出第七行的所有7個數(shù)字(不必說明理由);
(2)寫出與的遞推關(guān)系(不必證明),并求出的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}的前n項和為
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若,求數(shù)列{Cn}的前n項和Tn
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線:,數(shù)列的首項,且
當(dāng)時,點恒在曲線上,數(shù)列{}滿足
(1)試判斷數(shù)列是否是等差數(shù)列?并說明理由;
(2)求數(shù)列和的通項公式;
(3)設(shè)數(shù)列滿足,試比較數(shù)列的前項和與的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列中,,且.
(Ⅰ) 求,猜想的表達(dá)式,并加以證明;
(Ⅱ)設(shè),求證:對任意的自然數(shù)都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知數(shù)列和滿足,,。
(1)求證:數(shù)列為等差數(shù)列,并求數(shù)列通項公式;
(2) 數(shù)列的前項和為 ,令,求的最小值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com