(2006•浦東新區(qū)模擬)將參數(shù)方程
x=1+2cosθ
y=sinθ
(θ為參數(shù))化為普通方程,所得方程是
(x-1)2
4
+y2=1
(x-1)2
4
+y2=1
分析:直接利用平方關系cos2θ+sin2θ=1即可消去參數(shù)t得到普通方程.
解答:解:∵
x=1+2cosθ
y=sinθ
(θ為參數(shù))
cosθ=
x-1
2
sinθ=y

根據(jù)cos2θ+sin2θ=1可得
(x-1)2
4
+y2=1

故答案為:
(x-1)2
4
+y2=1
點評:本題主要考查了橢圓的參數(shù)方程,熟練掌握平方關系cos2θ+sin2θ=1是解題的關鍵,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2006•浦東新區(qū)一模)函數(shù)y=a|x-1|,(0<a<1)的圖象為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•浦東新區(qū)一模)右面是某次測驗成績統(tǒng)計表中的部分數(shù)據(jù).
學校 文科均分 理科均分
學校A 101.4 103.2
學校B 101.5 103.4
某甲說:B校文理平均分都比A校高,全體學生的平均分肯定比A校的高.
某乙說:兩個學校文理的平均分不一樣,全體學生的平均分可以相等.
某丙說:A校全體學生的均分可以比B校的高.
你同意他們的觀點嗎?我不同意
的觀點,請舉例
設x、y分別為A、B兩校文科學生所占比例,滿足y≥
18
19
x+
2
19
,即可以推翻甲的結論.比如:x=0.1,y=0.2,則兩校全體學生均分相等.
設x、y分別為A、B兩校文科學生所占比例,滿足y≥
18
19
x+
2
19
,即可以推翻甲的結論.比如:x=0.1,y=0.2,則兩校全體學生均分相等.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•浦東新區(qū)模擬)已知函數(shù)f(x)=x2-2ax+a的定義域為(1,+∞),且存在最小值-2;(1)求實數(shù)a的值;(2)令g(x)=
f(x)x
,求函數(shù)y=g(x)的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•浦東新區(qū)模擬)
lim
n→∞
(
1
2
+
1
4
+…+
1
2n
)
=
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•浦東新區(qū)模擬)計算:(1+i)2=
2i
2i

查看答案和解析>>

同步練習冊答案