已知
(1) 求函數(shù)上的最小值;
(2) 對一切恒成立,求實數(shù)a的取值范圍;
(3) 證明:對一切,都有成立.

(1)(2)
(3)構(gòu)造函數(shù),則
設(shè),則,利用單調(diào)性來得到證明。

解析試題分析:(1) ,當(dāng),單調(diào)遞減,當(dāng),,單調(diào)遞增.                                               
t無解;
,即時,;
,即時,上單調(diào)遞增,;
所以
(2) ,則,
設(shè),則,,單調(diào)遞減,,單調(diào)遞增,所以
因為對一切,恒成立,所以
(3) 問題等價于證明,由⑴可知
最小值是,當(dāng)且僅當(dāng)時取到
設(shè),則,易得,當(dāng)且僅當(dāng)時取到,從而對一切,都有成立.
考點:導(dǎo)數(shù)的運用
點評:主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運用,求解單調(diào)性以及極值和最值,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)函數(shù)在區(qū)間上是增函數(shù)還是減函數(shù)?證明你的結(jié)論;
(Ⅱ)當(dāng)時,恒成立,求整數(shù)的最大值;
(Ⅲ)試證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(1)求函數(shù)的定義域;
(2)判斷并證明函數(shù)的奇偶性;
(3)若,試比較的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)是(-∞,+∞)上的增函數(shù),a,b∈R.
(1)若a+b≥0,求證:f(a)+f(b)≥f(-a)+f(-b);
(2)判斷(1)中命題的逆命題是否成立,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) .
(1)求函數(shù)的零點;
(2)若方程上有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的最大值為1.
(1)求常數(shù)的值;(2)求使成立的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)是定義在區(qū)間上的偶函數(shù),且滿足
(1)求函數(shù)的周期;
(2)已知當(dāng)時,.求使方程上有兩個不相等實根的的取值集合M.
(3)記,表示使方程上有兩個不相等實根的的取值集合,求集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x|x-a|-lnx,a∈R.
(Ⅰ)若a=1,求函數(shù)f(x)在區(qū)間[1,e]上的最大值;
(Ⅱ)若f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

對于定義在實數(shù)集上的兩個函數(shù),若存在一次函數(shù)使得,對任意的,都有,則把函數(shù)的圖像叫函數(shù)的“分界線”,F(xiàn)已知,為自然對數(shù)的底數(shù)),
(1)求的遞增區(qū)間;
(2)當(dāng)時,函數(shù)是否存在過點的“分界線”?若存在,求出函數(shù)的解析式,若不存在,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案